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PREFACE 

This report is the second of a series describing experimental work presently 

under way at Philco-Ford Corporation on the character of compressible free 

turbulent flows, and especially on the characteristics of hypersonic wakes. 

It deals with the measurement and the spatial and spectral resolution of 

fluctuations in an axi-symmetric compressible wake and discusses the sim- 

ilarity rules by which these results can be extended to higher speeds. 

This work has been preceded by Philco-Ford Report No. U-3978, "Mean-Flow 

Measurements in an Axi-sy >etric  Compressible Turbulent Wake," 1 March 1967, 

in which measurements of the mean properties of the wake dealt with herein 

were presented.  A tl ird report, "Turbulent Front Structure of an Axi- 

symmetric Compressible Wake," describing the intermittency measurements, 

is being prepared. 

The author acknowledges with gratitude, the financial support and encourage- 

ment of the Advanced Research Projects Agency, the Space and Missile Systems 

Organization, USAF, and the Philco-Ford Corporation; the Analysis Section of 

the latter was especially helpful with the machine programming and 

computations.  Special thanks are also due Dr. John Laufer, Consultant, 

for many stimulating discussions, and Mr. Lee Von Seggern, whose expert 

assistance with the equipment and instrumentation proved of great value In 

this work. 
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ABSTRACT 

The turbulence characteristics of an axi-symmetric wrke shed by a very 

slender body at Msch  3 have been measured with the hot-wire anemometer. 

The region covered begAn at transition, located Immediately downstream of 

the model, and ended about 100 virtual wake diameters downstream.  By using 

computer-aided corrections to the anemometer frequency response, maps of 

the temperature and axial velocity fluctuations, their cross-correlations, 

spectral density, and auto correlation macroscales were obtained as a 

function of the axial and radial coordinates.  Beyond 40 wake diameters from 

the virtual origin, dynamic equilibration forces these distributions Into 

seemingly self-preserving forms.  These forms are Identical with their 

Imcompresslble counterparts except for a coordinate transformation already 

suggested by the dynamic equilibrium hypothesis and the Reynolds analogy 

typical of adlabatlc flows.  The density macroscale Is numerically smaller 

than that of the velocity, although they both approximate the transverse 

wake scale.  Away from the axis, both the fluctuation magnitudes and their 

spectral densities are distorted by the pseudoturbulence generated by the 

Intermittent boundary, which was found to be a weakly periodic structure 

with a wavelength on the order of the wake diametpr. 
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Transfer function of voltmeter detector 

Dimensionless hot-wire overheat (Equation (21)) 

Transfer function of anplifier (Equation (6)) 

Heat capacity of hot-wire 

Function of hot-wire finite circuit factor 

Virtual turbulent wake diameter (squared) 

Actual rms frequency-integrated output of overall 

system (rms volts) 

Ideal rms frequency-integrated output of overall 

system (rms volts) 

Mean voltage across hot-wire 

Rms voltage output of system within passband at 
frequency f (modally unresolved) 

Rms voltage "input" at frequency f into the wire 
(or, same type of voltage output from a perfect 
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Rms voltage output at frequency f from wire 

(including its lag) 

Same as above, but at amplifier output 

Same as above, but at compensator output 
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Same as above:  ideal system 

Equation (3) 

Equation (12) 

Hot-wire sensitivity to mass-flux fluctuations 

Hot-wire sensitivity to total temperature 
fluctuations 

Hot-wire sensitivity to entropy (temperature) 
fluctuations 

Hot-wire sensitivity to vorticity (velocity) 
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Frequency (dimensional) 
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Universal function of similarity radial 
distribution of fluctuations 

Universal function of similarity radial 
distribution of fluctuations 

Value of g on axis 

Amplifier gain 

Amplifier gain at zero frequency 

Wave-analyzer transfer function * 

Hot-wire current 

Error ratio (Equation (16)) 

Function of hot-wire overheat 
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Hot-wire length 

Transverse scale of wake 

Local mass-flux (product pu) 

Mach number 

Wire time constant 

Hot-wire constant at current I 

Time constant of amplifier 

Nondimensional frequency (based on velocity 

macroscale) 

Nondimensional frequency (based on density 

macroscale) 

Hot-wire Nusselt number based on stagnation 

conductivity 

Overall transfer function 

pressure 

Pitot p.-essure 

Density defect (Equation (86)) 

Hot-wire resistance 

Mass-flux-total temperature cross-correlation 

coefficient 

Velocity-temperature cross-correlation coefficient 

Hot-wire re istance at current I 

Recovery resistance of wire" 

Heated resistance of wire 

Turbulent Reynolds number 



Re 
o 

S 

t 

T 

T o 

T 

11 

u 

U 

V 

V m 

V 
n 

w 

W 

WEB 

WEB-Q 

X 

X 

X-Statlon 

Y 

a 
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Wire Reynolds number (based on stagnation viscosity) 

Function of the turbulent Prandtl -mmbpi- 

Nondlmenslonal total temperature lluctuation 

Temperature 

Total (local) tenperature 

Nondlmenslonal temperature (Equation (88)) 

Axial velocity 

Nondlmenslonal axial velocity (Equation (87)) 

Local -velocity scale (Equation (57)) 

Wave analyzer output (volts dc) 

Same as V 

Nofse output of wave analyzer (volts dc) 

Velocity defect (Equation (64)) 

Compensator transfer function 

Designation of present experiment 

Q ( - I, II ) designation of computer program 

Axial coordinate 

Nondlmenslonal axial coordinate (Equation (81)) 

Axial position of virtual origin 

Axial position of measurements 

Radial coordinate 

Function of Mach number (Equation (37)) 

Temperature coefficient of resistivity at 
recovery temperatute 



NOMENCLATURE (Continued) 

ß 

7 

AQ 

Af 

e 

n 
n 

9 

As 

P 

P' 

p 

O 

a(f) 
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Indices 
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Function of the Mach number (Equation (38)) 

Ratio of specific heat 

Rms value of the local vairiable Q 

Frequency Interval 

Finite circuit factor 

Hot-wire recovery factor 

Nondimensional radial coordinate (Equation (60)) 

Temperature defect (Equation (85)) 

Autocorrelation macroscale of the density 
fluctuations 

Autocorrelation macroscale of the velocity 
fluctuations 

Local density of flow 

Density scale 

Nondimensional density (Equation (89)) 

Rms nondimensional frequency-integrated temperature 
(density) fluctuation 

Same as above but within a passband Af 
(i.e., density fluctuation density) 

Turbulent Prandtl number 

Rms nondimensional frequency-integrated velocity 
fluctuation 

Same as above but within a passband Af 
(i.e., velocity fluctuation density) 
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SECTION 1 

INTRODUCTION 

Renewed Interest in the study of turbulence In compressible wakes has been 

generated by the need to predict the radar-scattering characteristics of 

re-entry flow fields.  Formidable difficulties in fluid mechanics and 

chemistry have directed current research toward two distinct goals.  One 

is the study of the wake turbulent structure itself; the other is a search 

for the link between the gasdynamtcal and electronic turbulence properties 

of a hydrodynamically turbulent plasma.  This report addresses itself to 

the first problem. 

Because high-speed wakes Involve fluctuations in the pressure, density, 

and temperature in addition to the velocity, unknowns of interest should 

now include the density or temperature fluctuation magnitude and its radial 

and axial distributions, as well as the distribution of spectra, autocor- 

relation functions, and scales of the same properties.  To these, one should 

add the statistical distribution of fluctuation magnitudes and, of course, 

the intermittency characteristics of the tvrbulent boundary.  Further, there 

i are two Idiosyncracles of the compressible wake which bear heavily on the 

design of an experiment.  First, the inviscid gradients generated by vehicle 

shock waves force the wake to grow into a nonuniform stream; this puts a 

premium on the search for the self-preserving characteristics of the turbulent 
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wake so that the turbulent structure can be predicted regardless of invlscid 

gradients.  Second, in contrast to low speeds, transition in the supersonic 

wake can occur at some distance behind the vehicle; :he question arises as 

to the initial values of the turbulence properties in the transition zone. 

Very little has been done to answer these questions.  Most of the available 

information comes from two sources; low-speed experiments (References 1 

through 5) and very recent attempts to measure these properties in .allistic 

ranges (References 6 and 7).  The attractiveness of producing wakes with 

hypervelocity pellets in the latter is severely offset by two factors; 

first, the lack of pellet path control and probe position; and, second, 

difficulties with Taylor's hypothesis (Reference 8).  For example, it is 

impossible to perform repeated shots with slender bodies at zero angle of 

attack and to control, a priori, the path of the probe in the wake; the 

radial position of the measurementrpoint is therefore always in doubt, and 

measurements near the wake axis obviously cannot be made for many tens 

(perhaps hundreds) of base diameters.  However, at these far distances, 

the mean flow velocity around the probe might be "o low that the turbulence 

structure might change significantly; the so-called Taylor's hypothesis, 

which is crucial to the interpretation of data, is thus invalid. 

We conclude that ballistic range experiments, although of qualitative value 

at high Mach numbers, cannot match the precision and accuracy of wind tunnel 

work in this regard. 

In the meantime, attempts have been made to approach the problem theoretically; 

several are summarized in Reference 9.  Recently, Morkovin (Reference 10) 

correlated low- and high-speed experimental data within the scope of the so- 

called dynamic equilibrium hypothesis and his suggestions were expanded by 

Laufer (Reference 11) specifically to the axi-symmetric hypersonic wake. 

The power of this latter approach lies in the dependence on concepts verified 

experimentally (Reference 1) and on its potential of providing useful pre- 

dictions for the hypersonic wake by unifying incompressible and compressible 

behavior into relatively simple rules.  By virtue of both its simplicity and 

promise, this theory will play a central role in interpreting the present 

experimental data. 
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No wind tunnel turbulence measurements of compressible wake flows have been 

reported to date.  Such experiments are held back mainly by shortcomings of 

hot-wire anemometry and, in the case of axi-symmetric wakes, by the diffi- 

culty of suspending axi-symmetric models at high speeds.  Of these two 

problems, the former is the most serious, and was overcome in the present 

experiment by a complex and admittedly laborious process. 

The present work deals with the turbulent field alone and has been preceded 

by a detailed study of the mean (time-averaged) flow field in the axi- 

symmetric wake.  These mean-flow measurements, described in Reference 12, 

are necessary in order to compute the sensitivity of the hot wire to the 

different modes of turbulence and to relate the turbulence properties to 

the local and integral properties of the flow.  The reader should consult 

Reference 12 for details regarding the mean-flow properties and the instru- 

mentation and techniques by which these properties were measured. 
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SECTION 2 

APPARATUS AND TECHNIQUE 

2.1 WIND TUNNEL AND MODEL 

The experiment was performed at Mach 3 In a continuous air wind tunnel. 

The wake was produced by a circular rod supported by a strut upstream of 

the nozzle throat and cantllevered Into the test section through the 

throat.  The Reynolds number In the test section was 50,000 per cm, 

generated by a tunnel total pressure  and temperature of 508 mm Hg abs 

ard 27CC, respectively.  Further details on the tunnel itself appear in 

Reference 13. 

2.2 GENERAL FEATURES OF THE FLOW FIELD 

Figure 1 shows a schematic view of the model and wake flow.  The wake Is 

formed by the boundary layer shed off the body; transition to turbulence 

could be located .n will along the axi-symmetric wake by changing the 

tunnel total (supply) pressure. At the chosen pressure of 508 ram Hg, 

transition lies between about 10 and 15 base diameters downstream of the 

base, allowing for the maximum turbulent wake length accessible to probes; 

at the same time, the wake is relatively thinner than would be obtained if 

transition was moved to the model surface. Furthermore, since laminar 

reattachment (at the wake neck) Incurs a lower pressure rise than turbulent 

reattachment, invlscid gradients around the wake were extremely mild; the 
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wake shock disappeared completely at this pressure and the Mach number 

external to the turbulent region was 2.96 ±0.02 for the entire wake length. 

2.3 HOT-WIRE ANEMOMETER 

The turbulence properties were measured with a single 0.00005-inch-diameter, 

0.01-inch-long pt 107. Rh wire; the hot-wire probe is pictured in Figure 2. 

Prior to use, each wire underwent a temperature-resistance calibration in 

a controlled oven and a calibration of its heat-transfer characteristics 

in a known supersonic flow external to the wake.  The details of these 

preparatory steps are given in Reference 12, together with numerical 

results of the calibrations. 

The single most important precaution in mounting the hot wire for use was 

its strain gage characteristic.  The problem, arising from structural 

oscillations of the wire in the flow and superposing on the output spectrum 

numerous misleading energy peaks, has been thoroughly described by Motkovin 

(Reference 14).  By using only those wires with significant slack (e.g., a 

quarter-circle), it was possible to obtain completely undistorted spectra. 

In practice, each single wire was routinely subjected to a test whereby its 

output spectrum in the turbulent wake was obtained prior to use. A wave 

analyzer with a mechanically driven frequency sweep was especially helpful 

in these tests.  In practice, about 80 percent of the wires mounted were 

rejected because the spectrum so obtained showed discernible strain gage 

problems, of the type shown in Figure 3. 

Spatial resolution of the wire in the transverse direction was controlled, 

of course, by its length, which was 0.01 inch.  By contrast, the w^ke 

diameter was about 0.30 inch on the average so that the probe resolution 

was of order 1/30.  It should be also noted that the wire was positioned 

at all times alons a direction normal to the distance between it and the 

wake axis.  In addition to the spatial resolution necessary for these 

measurements, the temporal resolution was of great importance. This was 

controlled by the wire time-constant limit at zero current (on the order 
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FIGURE 2 HOT-WIRE ANEMOMETER PROBE SHOWN \T NEARLY FULL-SCALE AND 
ABOUT 100 X MAGNIFICATION (BELOW, RIGHT) 
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FIGURE 3. STRAIN-GAGE CHARACTERISTICS OP HOT-WIRES PLOTTED AS INTEGRATED 
WIRE OUTPUT VS. FREQUENCY. TOP LEFT: SEVERE TOP RIGHT: 
TYPICAL BOTTOM LEFT: ACCEPTABLE BOTTOM RIGHT: IDEAL (CURVES 
RLPRODUCED DIRECTLY FROM >Y PLOTTER SPECTRA) 
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of 0.1 millisecond) and the floor-to-ceiling ratio of the compensating 

amplifier, which was 500 in the present instance.  The resulting frequency 

response of 800 kilocycles per second represented, when divided by the 

free-stream velocity, a scale of about 0.2 the body diameter.  This short- 

coming was significant but not prohibitive and, as will be seen below, was 

overcome by detailed spectral measurements at the higher frequencies.  The 

frequency response of the anemometer (its transfer function) is discussed 

in Appendix A.  An idea of the response speed of the instrument under 

typical operating conditions can be obtained from Figure 4. 

2.4 ELECTRONIC INSTRUMENTATION 

A block diagram of the instrumentation necessary to record the turbulence 

data is shown in Figure 5; the same equipment was earlier used for the 

mean measurements. ; 

The wire was powered by mercury cells contained in the Transmetrics, Inc. 

Model 6401-1 Current Control Panel, and signal amplification and compensa- 

tion was achieved by a Transmetrics Model 6401-5 Constant Current Amplifier 

and a Model 6401-7 Square Wave Generator. A Hewlett-Packard Model 3440A 

Digital Voltmeter and a switching circuit selectively displayed the wire 

current and voltage, alleviating the need of bridge-balancing during the 

probe traverse. Measurement and display instruments included a Ballantine 

Model 320A true RMS Voltmeter, a Singer-Metrics Model SB-76Z 1 to 

300-kilocycie-per-second Panoramic Wave Analyzer, a Hewlett-Packard 

Model 310A 1.5-megacycle Wave Analyzer driven by a 297A Sweep Drive, a 

Tektronix Model 551 Dual-Beam Oscilloscope, and a Hewlett-Packard 

Model 7000A X-Y Recorder.  An intermlttency meter, designed by 

Dr. H. Shapiro and built at Philco-Ford by Mr. L. Von Seggern, was used 

for intermlttency and other statistical measurements.  A Tektronix Model 549 

Storage Oscilloscope with dual-trace capability (effected by a Tektronix 

Model 1A1 Chopper) was also used for statistical measurements. 

-10- 



FIGURE 4.  TYPICAL OSCILLOGRAM OF INTERMITTENT WIRE OUTPUT NEAR WAKE EDGE. 
TOP TRACE IS VOLTAGE OUTPUT SHOWING A 15-MICROSECOND "EVENT' 
DURING WHICH THE WIRE IS IMMERSED IN TURBULENCE.  BOTTOM TRACE 
IS RECTIFIED ANALOG OF THE TOP TRACE, USED FOR MEASURING THE 
INTER1 ITTENCY FACTOR.  NOTE FAST HOT-WIRE RESPONSE:  DOTS ARF. 
SPACED ONE MICROSECOND APART. 
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FIGURE 5. ELECTRONIC CIRCUIT USED FOR TURBULENCE MEASUREMENTS. 
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2.5    EXPERIMENTAL PROCEDURE 

The measurement of  the  rms  fluctuations of  the  flow variables and  of  their 

spatial correlations in the wake  lies within the capability, of  the constant- 

current anemometric  technique developed  for compressible  flows by Kovasznay. 

Morkovin.  and   their co-workers  (References  14 and  15).     The   latter  tech- 

nique,  bolstered by the computer-aided process of extending the wire 

frequency response, was used  throughout  this work.    The measurements were 

performed  by obtaining radial profiles  of hot-wire  output   at  14  axial 

positions along  the wake  (designated X-Station 0 through 13)  beginning at 

17 model base diameters downstream of the base and  spaced 0.500 inch apart. 

The several weeks needed  to obtain  the necessary data and  the  inevitable 

wire breakage* forced the use of several wires during the measurements. 

All data were obtained from traverses along the Z-axis. 

There are  two types of analyses of the hot-wire output which are of interest. 

By the  modal analysis, we seek to break down the fluctuations received 

within a certain bandwidth into contributions from each flow variable 

(modo);  e.g..   the velocity or the density.    The bandwidth chosen may be 

small,   in which case the spectrum of each separate mode can be obtained,  or 

large enough  to cover the entire  frequency range,  in which case  the  fre- 

quency-integrated contribution of each mode to the  total hot-wire output 

can be determined.     In the former instance,   the spectral analysis of  the 

signal vields the relative importance of each mode at different frequencies 

(or wave numbers)  and allows for the computation of the mode autocorrelation 

function and  its  turbulence scales.     In any case,   the  first basic  step con- 

sists of measuring  the total wire output at each of at  least  three heating 

currents;  knowledge of the mean-fi™ properties is also necessary to compute 

the  sensitivity coefficients  (Reference  14).    Three equations are  thus 

obtained and one can solve for three unknowns:    the mass-flux fluctuation. 

Mpu)/pu.   total  temperature fluctuation. ATo/To, and  the cross-correlation. 

'some 0.00005-inch-diameter wires survived more than 50 hours of tunnel 
time;  the average was closer to 20 hours. 
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r  . of these two fluctuations.  The accuracy of this measurement can be 
mt 
increased if more than 3 measurements are taken and, in fact, 15 different 

values of heating current have been chosen in the present experiment.  The 

highly redundant system of 15 equations was then solved by the ieast-squares 

method. 

At each axial station, the wire was first placed just outside tha wake, its 

current was fixed to  the desired value, its time constant was measured by 

the square-wave method, and the compensating amplifier was adjusted to that 

value of the time constant.  The wire was then traversed radially across 

the wake and a continuous trace of its average voltage and the frequency- 

integrated mean square of its fluctuating output, deriving from the maximum 

possible bandwidth of the system, were obtained.  This procedure was 

repeated for each of 15 different wire currents for a total of 30 data 

curves at each axial station. There were 15 mean-wire voltage versus 

radius, such as shown In Figure 6, and 15 traces of the frequency-Integra ted 

mean-square ac component of the wire output versus radius.  An example of 

the latter is shown in Figure 7. 

If the frequency response of the wire-amplifier-compensator system were 

linear over the range of the flow fluctuation spectrum, the data mentioned 

in the above paragraph would be sufficient to resolve the signal into the 

frequency-integrated contributions from each turbulence mode at any desired 

point in the wake.  However, neither the amplifier nor the compensator 

could attain a linear transfer function over the 500-kilocycle-per-second 

(keps) range where signals were, by preliminary measurement, known to occur. 

In addition, because of the local Reynolds number variation in the wake, 

the constant-current wire underwent a change of its time constant with 

radius and thus a change of its own transfer function (frequency response). 

Because of the intense turbulence, proper compensation of the wire within 

the wake was not possible. Even if it were, the point-by-point adjustment 

of the compensator transfer function would increase the already taxing 

labor of fluctuation measurements well beyond practical proportions.  It Is 

■14- 
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FIGURE   7. TYPICAL RAW TURBULENCE DATA AS REPRODUCED 
DIRECTLY FROM X-Y PLOTTER.  ORDINATE IS WAKE 
RADIUS; ABSCISSA IS INTEGRATED OUTPUT.  EACH 
CURVE CORRESPONDS TO DIFFERENT WIRE CURRENT 
(SENSITIVITY), NOTE SYMMETRY. 

F09814U 
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therefore clear that some of the signals contained in the turbulent fluid, 

(i.e., those at the higher frequencies), were missing from the 15 traverses 

previously mentioned. 

To overcome this difficulty, the following principle was invoked:  the 

amount by which an imperfect mechanical system distorts (e.g., attenuates) 

an input signal can be found by measuring the transfer function (i.e., the 

frequency response) of the system itself and of its output.  Thus, the out- 

put spectra of the wire at each axial position were recorded for a nutioer 

of currents and radidl positions*.  The results were combined wi 'h  the 

known overall transfer function of the wire-amplifier-compensator system 
2 

to yield the ideal frequency-integrated mean square voltage output, e* , 

of the wire as a function of axial and radial coordinates x and y 

f vz m — - 

Ifcjl 
(x.y) i •'"" (t) 

J (x, y, I) (1) 

o 0   0       *}   0 

where e is the recorded mean sqvre output, w G /c G the overa1! transfer 

function, V (f) the wave analyzer output at each frequency, and f and fg 

are the l-kilocycle-per-second analyzer bandwidth.  The error ratio, J, 

thus obtained was then applied to the mean square output from the constant- 

current traverses of the type shewn in Figure 7 to correct for the nonlinear 

response of the system.  A separate computer program was set up to bring 

about this response restoration effect; this is the WEB-II program (See 

Appendix B). Figure 9 shows the variation of the wire time constant and 

error ratio across the wake 17 diameters downstream of the base.  Interest- 

ingly, J approaches a limit independent of wire current as the latter 

*Thls was done for each of 8 currents and at 10 radial positions for a 
total of 80 spectra at each axial station.  Combined with the mean and 
turbulence measurements, a total of 115 traces were necessary at each 
axial station. An example of such spectra is shown In Figure 8. 
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increases.* It should be noted that the time constant, M, inside the wake 

was computed, for each current, by 

where M is the time constant measured at the wake edge, I is the current, 

and R is the wire resistance.  In this way, reliance on a theoretical cal- 

culation of M is largely circumvented and only the dependence of M on 

overheat and Reynolds number is retained (see Appendix A). A final point 

concerning the role of the error ratio, i.e., the need for the response 

restoration procedure, is shown in Figure 10. We see that, in the region 

investigated, J decreases towards the far wake but remains higher than 

unity. Corrections were thus necessary even at about 100 diameters down- 

stream. 

The procedure described above was necessary to give correct results for 

the modal analysis of the data, that is, correct values of the frequency- 

integrated but modally resolved fluctuations from point to point. The 

computer program set up to handle the above "response restoration" of the 

anemometer system (see Appendix B) also supplies the fluctuation spectrum 

(i.e., the true distribution of the flow disturbances with frequency 

corrected for any shortcomings of the instrumentation) at each axial posi- 

tion for each of 10 radial locations and, at each of the latter, at each 

of 8 heating currents. The output of spectra listed in WEB-II 

(Appendix B), thus formed the basis of the spectral analysis wherein the 

spectral density of the temperature (density) and axial velocity fluctuation 

and of the cross-correlation could be resolved at each point in the wake. 

Figure 9 shows that the zero-current value of the time constant in the 
free-stream approaches the theoretical value of about 0.1 millisecond by 
which the frequency response to 800 kilocycles per second was originally 
estimated.  Because of the large increase of the time constant in the 
wake, however, the response capability decreases there and results in 
the large J's measured. 
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 1 r- 
M, =   3.0 

Re   =   50,000 CM 

0.00005 IN. WIRE 

-1 

WAKE AXIS (AT 6.4 MA) 

FREE STREAM 

IDEAL RESPONSE (J = 1) 

lL ± ± 
12 14 6 8 

X STATION 
10 

FIGURE 10.  ERROR-RATIO VARIATION IN THE AXIAL DIRECTION AT THE 
HIGHEST WIRE CURRENT USED. 
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The essential point here, hitherto not appreciated, Is that at the present 

state of the art, spectral measurements are mandatory whether or not a 

spectral analysis of the data Is Intended. 

2.6  DATA REDUCTION AND PROCESSING 

2.6.1  SIGNAL PROCESSING 

It Is now necessary to describe how the data as obtained above were pro- 

cessed through the electronic equipment shown in Figure 5.  This descrip- 

tion utilize'? the principles rather than the exact characteristics of the 

electronic components used in this experiment (the latter being given in 

Appendix A) so as to be of value to others engaged in similar work. 

For a fixed current, the sensible real input to the measuring system of a 

constant-current anemometer is a voltage fluctuation into the wire. 

Between the latter and the recording device, the signal proceeds through 

the elements of the block diagram of Figure 5 and is thus affected by the 

transfer functions of these elements.  Generally, these transfer functions 

execute selective filtering or amplification, squaring, averaging, inte- 

grating, and so on.  Because these functions are often unobtainable from 

the manufacturer, they wpre measured carefully prior to this work, a pro- 

cedure necessary to increase accuracy and, as shown in the preceding 

section, to make the wirk possible in the first place. 

Consider that the continuous Fourier spectrum of the flow into the wire 

(or, otherwise stated, the output of the wire if the latter had no thermal 

lag) is the sum of contributions of a large number of discrete oscillators, 

each vibrating at frequency f, and contributing a mean square voltage 
2 2 
•(f) f^ow (volts) /cps in the interval Af. Then, since these contributions 

are additive in the sque-ti, the overall wire signal is 

/. 

. 

E2 -  | e2 (f) flow df  (volts)
2 

- 
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Because of the well-known thermal  lag phenomenon (Reference 11),   the 

actual mean square wire output e  (f)   .      will be  lower than e   (f),.,     ,  and 
wire ^ 'flow 

the transfer function W(f) of the wire is then defined by 

W(f) 
e(f) flow 
e(f) ^ 1 

wire 
(A) 

The signal  is now inserted in an ac amplifier with transfer function G(f) 

which can be split  into a frequency-independent zero-frequency gain,  G  , 

and  the amplifier drop-off characteristics G/G   (f);   the amplifier output, 

e(f) can then be defined by amp, ' 

e(f) 
G(f)    =     äiD2_    .    <L 

e(f) wire 
(f>   Gn   5    G„ b O    ~ O 

O 
(5) 

The signal next proceeds to the compensating amplifier which has usually a 

zero-frequency gain of unity, a transfer function, C(f), and an output, 

e(f)   , such that comp' 

C(f) 
e(f) 

e(f) 
comp 

(6) 
amp 

Note that C(f) is also a strong function of the compensator time-constant 

setting and that it generally rises well above unity to some maximum and 

thereafter decays. 

If Equations (4), (5), and (6) are combined, the mean square voltage com- 
2 

pensator output for a specific flow input, e (Ori  , in the passband Af 

around the frequency, f, is given by 

e2(f)    Af comp 
C2(f) G2(f)   2,.,    A,  ,  .  .2 
—    2     e (f)flowAf  (volt8) vr(f)      tlOW 

It should be noted that the quantity CG is a given function of frequency 

for a given setting of the electronics.  The quantity CG/W, on the other 

hand, which : i equivalent to the overall transfer function (OTF) is addi- 

tionally a function of the wire time constant and thus a function of the 



> 

wire and flow characteristics, changing from current to current and from 

point to point in the wake; however, it is insensitive to the magnitude of 
2 

e (Ori  within broad limits.  The OTF was provided, as a function of 

frequency at each wire current and point in the wake, by the output of the 

WEB-II program, and a typical plot is shown in Figure 11.  Note that the 

system response deteriorates, although not greatly, as the frequency 

increases. 

There are  two alternatives  to  further processing of the data.    For spectral 

analysis,   one uses a wave analyzer with constant-bandwidth,   f    cps;   in this 

case,   the analyzer also incorporated a detector with transfer function,  H, 

such that 

V^f)    =   r 

and  thus 

[e2(f>comp fB] (volts)   (dc) (8) 

e2(f) 
flow 

W 
2  2 

C G H2f B 

(volts)   (mean square) (9) 

The integrated fluctuations obtain when a wideband rms voltmeter obtains 

the sum of the compensator output 

'VTVM I e2(f)  df (volts)1 
comp 

(mean square) (10) 

and thus 

-VTVM 
f sLx 

Jo        W2 

2 G2       2 
2-    e(f>flowdf (volts)    (mean square)   (11) 

This voltmeter also has a detector of transfer function A which converts 

the mean square fluctuating voltage into a dc voltage E' such that 

E'  " A «VTVM VOlt8 (dc) (12) 

for use with the X-Y recorder. 
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When both the spectrum and the integrated measurements are performed, we 

have available a cross-check of the experiment since, by relating 

Equations (9), (11), and (12) we can write 

El 
A 

■ e 
VTVM 

Jo     W 

2 G2   2 e^f),,   df = v  flow I^'ft) (13) 
This check was performed at each measuring point with the aid of computer 

program WEB-II and gave satisfactory results, as can be seen in Figure 12. 

Returning now to Equation (11), we rewrite it as 

,2  „2 

'VTVM 
f £!_ si 
1 o! w2 

e^fK,  df v  flow 
(14) 

For an ideal amplifier (flat to infinite frequency), G/Go is unity; C is 

supposed to have a characteristic exactly inverse to U below some frequency 

at which it peaks, and if e2(f)flow - 0 beyond that point, then C/W is 

also unity over the spectrum.  In this case, the ideal mean square voltage 

e* 
VTVM i e2<f)flow df (volts) (15) 

is obtained, and thus the error ratio, J, is computed as explained in 

paragraph 2.5. 

J = 
VTVM 

'VTVM 

• 

(16) 

Note that, as explained previously, J = 1 for an ideal electromechanical 

system (W/C -  1. G/G  - 1), and also that J can be obtained accurately 

if H and f_ are unknown but still Independent of frequency. 
B 
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A last point concerns the subtraction of electronic noise from the measure- 

ment.  When the wire heating current is turned off, the rms voltmeter reads 

a noise level (eVTVM) noise, whereas with the current turned back on, a 

reading (eVTVM) meas is  obtained.  Because the turbulerse and electronic 

noise are unconelated, one obtains 

2 
"VTVM 

/2   \ /'   \ 
(eVTVMJ meas    leVTVMi noi se (17) 

for use with the previous formulas.  A similar correction is necessary in 

the spectral measurement;  If Vm (f) is the analyzer detector output (in 

volts) and V (f) is the corresponding noise at frequency f, then 

©■ ■ ® ■ &)" (18) 

is the corrected reading  (in volts squared)  at  that frequency. 

■ 
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Knowledge of the wire Reynoldo number Re0 cause from the diagnosis of the 

mean propercies of the wave, described in Reference 12. The modal analysis 

into the rms normalized mass-flux and total temperature fluctuations and 

their correlation 

m  B 
_ [Aifiuil 

pu J rms 

AT 
t  s 

lmt 

rms 

MM 
pu 

A(Pu) 
pu 

AT 

rms rms 

(25) 

(26) 

(27) 

was then made by the simultaneous solution for the 3 unknowns of 15 equa- 

tions of the type* 

G2e2 

o 

o  o   2  2 
e m + e t - 2 mtr  e e 
m      t mt m  t 

(28) 

where (e*2/Go i2) is the normalized voltage fluctuation adjusted for the 

zero-frequency amplifier gain. G0.  (The bandwidth of these modal measure- 

ments was in each case sufficient to include sensible signals at all 

frequencies.) Here e* (volts) refers to the ideal frequer-.y-integrated 

mean-square wire output at each particular value of the heating current 

G2/ e2(f) 
OJo 

d. (volts)' 
flow f 

(29) 

Note the similarity with Equations (3) and (15), which say that 

*2     *    _ »2 „2 
a   Ä  e VTVM " E Go 

(30) 

*  Following past practice, the unknowns are obtained by the computer from 
the shape parameters of the second-degree curve fitted to the 15 experi- 

mental points.  (See Appendix D.) 

•29- 



2,6.2 MOi^T, ANALYSIS 

Once supplied with a method for alleviating the response shortcomings of 

the system, the turbulence data (i.e., those described by the 15 traverses 

mentioned earlier) could be reduced.  The sensitivity coefficients em and 

e to mass flux and total temperature fluctuations, respectively, were 

computed by the following slightly modified form of Morkovin's 

(Reference 14) formulas 

Re dNu 
o   o d-n 

w Nu dRe 
o   o 

A  Re 
w  o 
T   r]    ÖRe 
wr      o 

(19) 

= c K + 
w 

K + 0.765 
Re ÖNu 
 o  c 
Nu oRe 

1.885 

(20) 

0.765 
\      Re -vr, 
W    O OT) 

T   T| 
wr 

Re 

where c, accounts for the circuit impedance, T  and K are related to the 
f ,        wr 

resistance-temperature slope, and Aw is Morkcvin's overheat parameter 

' u 
1 I OF 
2 R ST 

(21) 

associated with the wire resistance R change with current, I, which could 

be directly obtained from the traverses of Figure 6. For the type of 

hot wires employed (Reference 12), the zero-current Nusselt Number Nu0 

based on the stagnation conductivity is given by 

(22) 
Nu0 =■ 

whence 

ÖNuo 

BRe 
o 

Similarly 

0.04186 Re + 0.1803 

0.04186 + 
0.0902 

T) - 0.99 + 
0.05661 

Re 
2.174 

GT" +  0.1078 
o 

(23) 

(24) 
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Alternatively, a more revealing and practically Important modal split 

decomposes the signal intc vorticity (velocity), entropy, and sound 

fluctuations (Reference 14 and 15).  It is significant that both Kovasznay 

(Reference 15) and Kistler (Reference 17) have confirmed the relative 

unimportance of the sound mode inside compressible turbulent shear flows, 

compared to the 'orticity and entropy modes.  The data of the present 

experiment were thus further reduced on the assumption that there were no 

sound fluctuations inside the turbulent wake.  At each ooint in the wake, 

another 15 equations are obtained of the type 

*• 2 
e 2 _2 2    2 

— = eTT    +eaa    +2  eTefl roT TO (31) 2-=2 - *r >     - •<, u - * «T -a 'or 
G e 
o 

where the vorticity fluctuation 

T=(£ü\ , (32) 
\ u / rtn^ * 

am. the entropy fluctuation 

O s (AI)     . (A£) (33) 
\ T / rms   \ P / rms 

and, of course 

\ u / rms \ T / rms       \ u / rms  \ P / r 

(34) 

The coeffocients eT and ea of wire sensitivity to vorticity and entropy 

fluctuations, respectively, have been derived by Morkovin in terms of the 

corresponding coefficients em and eT given by Equations (19) and (20) 

ir   - em +aeT O5) 
I»    i 

(36) 

*  Following past practice, the unknowns are obtained by the computer from 
the shape parameters of the second-degree curve fitted to the 15 experi- 

mental points.  (See Appendix D.) 
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where a and ß are functions of the specific heat ratio 1  and tue Mach 

number M 

-1 
a = 1+^M2 

ß = a CY-D M 

(37) 

(38) 

Again, the curve-fitting process was used to solve the redundant system 

of 15 equations, such as (31). for T, a. and the correlation ra,. 

It is of interest to look at the variation of wire sensitivity -.0 the 

different modes with heating current, as shown in Figure 13.  The out- 

standing feature is the existence of values of the heating current for 

which the sensitivity eT to vorticity vanishes, as was mentioned in 

Paragraph 2.5.  This important fact, first recognized by Kovasznay 

(Reference 15). implies that in the absence of sound, the density fluctu- 

ations alone can be measured directly and quite simply if one knows the 

wire characteristics and local flow properties precisely, in the present 

instance, this circumstance was utilized to provide very satisfactory 

cross-checks of the entropy fluctuation results.  It was also used for 

studying the interaittent nature of the density profile of the wake. 

SPECTRAL ANALYSIS 
more precisely, modal- 

ributions of each mode of 

fluctüätiön7The'kV to this an\lysis is that the equation of modal 

resolution. Equation*(31). is independent of bandwidth.  Because the 

fluctuations are constant with frequency f to good approximation within 

i . \  J U — J.-JJ^U ..»ei «o ran write the modal equad 
fluctuations are constam. w*»« ^M-W..-, - - ~ 

the l^ilocycle.per-s*ond bandwidth used, we can write the modal equation 

K 

Ctl^l 

M t»e 

e2T2(f)+eJa
2(f)+2eTear0T(f)0(f)T(f) (39) 

\ 
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FIGURE 13.  VARIATION OF THE WIRE SENSITIVITY COEFFICIENTS AND OVERHEATING 
PARAMETER Aw WITH WIRE CURRENT AT A TYPICAL POINT IN THE WAKE. 
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*2 .9 
at each  frequence f, where e    (f)/e    is the nondimensional mean-square 

output per kilocycle.    The sensitivity coefficients retain their previous 

values. 

By way of clarification, note that when the sum of signals in all adjoining 

passbands is taken and the result integrated over frequency, Equation (39) 

gives 

*/, 

00 -: 

e" (f)df = e. f     T2(f)df + e2
a    f 

JQ •'O 

rj 

0 (£)df 

+ 2 ea e r0T(f)a(f)T(f)df (40) 

so  that 

f 
i 
r 

2 2 
e*  (f)df = e* 

a2(f)df = Ö2 

T2(f)df -T2 

r    (f)a(f)T(f)df » raTa T 

(41) 

(42) 

(43) 

(44) 

which brings us back to Equation (31). The latter equations should also 

dispel confusion regarding dimensions and units.  For example, tho output 

spectral deunity e*2(f) should be defined in a way (e.g., (volts)2/kcps) 
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consistent with the integrating interval df (e.g., kilocycles per second. 

If the quantities T(f)/T and ö(f)/aare defined as the velocity (vorticity) 

and density (entropy) spectral densities, the spectra are normalized to 

unity; that is 

• 00 

.2 

*/ 
T'(f)df 

if 
a2 I 

O 

00 

a'(f)df = l 

(45) 

(46) 

The spectra can next be normalized ty the characteristic frequency of the 

turbulent flow, which .is u/Ai, where u is the local flow velocity and 

Ai is the integral scale appropriate to the quantity i ( Ac if the entropy 

scale, AT the vorticity scale) which is derivable from the Eulerian time 

integral scale for the single wire; the latter is connected with the 

spectrum (Reference 18) so that 

lim 
f-»o 

lim 
f-»o 

T2(f)    ^T 

T2  ~   u 

aim m th 

- T (0) 
^2 

O2 

(47) 

(48) 

- 
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SECTION 3 

PRELIMINARY OBSERVATIONS 

3.1 THE EXTERNAL TURBULENCE FIELD 

The amount of free-stream (ambient) turbulence in the wind tunnel was 

measured prior to the study of ehe fluctuations in the wake. The stream 

turbulence is often a critical factor in that it can add to the noise of 

the electronic equipment in obscuring the turbulence level in the waice 

itself,  Initial measurements without the model in place showed rather 

large fluctuations, on the order of 1 percent in the mass flow and 

0.3 percent in the total temperature. Measuremenfs performed later with 

the model in place end with the computerized data reduction process 

described in the previous paragraphs disclosed the above computations to 

be larger than the actual turbulence level by a factor of about 3.  At no 

time was the stream turbulence level a serious obstacle to the fluctuations 

in the wake, including the points of observation farthest downstream. 

3.2 OBSERVATIONS ON THE TRANSITION PROCESS 

Although this work was not aimed at investigating the events in the laminar 

wake leading up to transition to turbulence, some interesting phenomena 

were detected in the laminar and pretransitional flow. Briefly, a sharp 

energy concentration at about 20 kilocycles per second was observed to 
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occur in the laminar wake, with the rest of the spectrum completely devoid 

of fluctuations. As the wire approached the transition zone, the ener/.y 

prominence first increased in magnitude and then rapidly began to feed 

energy into the higher frequencies. Further downstream, the paak decayed 

so that a completely random spectrum remained in the turbulent wake. This 

result was obtained both by first keeping the wire stationary and moving 

the transition forward toward th^ probe by increasing the tunnel pressure, 

and also by keeping the flow fixed and moving the wire downstream in the 

laminar wake toward the transition zone.  It was also obtained with differ- 

ent wires. These facts, added to the care exercised to recognize and 

reject extraneous signals, strongly suggest that the phenomenon is real 

and is further associated with the transition process.  The intriguing 

possibility of finding a connection between laminar instability and transi- 

tion to turbulence suggests that further exploration of this phenomenon is 

needed.  These observations are pictured in Figure 14. 

I-Zoo mm 

TS5 

iX) 

fiaiti    «» 

400 

F09853 U 

FIGURE 14. UNPROCESSED HOT-WIRE SPECTRA TAKEN AT A FIXED LOCATION IN 

THE WAKE FOR DIFFERENT TUNNEL STAGNATION PRESSURES SHOWING 
THE ONSET, INCREASE AND "SPECTRAL SPREADING" OF L AMINAR 
INSTABILITY. 
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SECTION 4 

SIMILARITY CONSIDERATIONS 

We shall preface the description of the experimental, results by outlining 

current empirical predictions of the distribution of turbulence properties 

in the wake.  Our chief premise is that, following a certain relaxation 

period, the turbulence properties may soon adjust to a self-preserving 

(similar) form connected simply with the local mean properties.  If it 

exists, this similarity behavior should he closely connected with the 

behavior of incompressible turbulent flows.  By providing experimental 

proof of a more general rule, insensitive to compressibility effects, we 

have a good ciiance of extending our present results to cover the dynamics 

of wake flows at very high Mach numbers. 

The dynamic equilibrium hypothesis (DEH), discoursed at length by Townsend 

(Reference 1), prescribes that the large eddies maintain a dynamical 

balance between the extremities of turbulent shear zones in a way that 

simply relates the fluctuations and the mean propertiep.  These ideas, 

formulated in context with incompressible flows, have been recently 

extended to compressible turbulent fits by Morkovin (Reference 10) and 

Laufer (Reference 11). Morkovin observed that, with appropriate scaling, 

the turbulent energy distribution in sheai flows is insensitive to geometry 

•39- 
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and «ach number.  Extended to the ooapreaaible turbulent «eRe b, laufer, 

and restricted to adlabatlc flows, this observation has the following 

implications: 

(1) There are no fluctuations in the flow 

total temperature 

AT  = o 
o 

(2) In consequence, the entropy (density) and 

vorticity (velocity) fluctuations are related 

through the local Mach number, M 

(Ap/p) rms 
(Au/u) 

=  (7 - 1) M 

rms 

(3) The temperature and velocity fluctuations 

are perfectly antl-correlated 

raT = "l 

(4) The nondimensional turbulent energy is a 

universal function g of a properly transformed 

transverse coordinate T) 

(49) 

(50) 

(51) 

(52) 
p(Au)2 - p' U gOl) 

„here p' and U are appropriate density and 

velocity scales, respectively. 

4 1 VELOCITY FLUCTUATIONS 

«a cen no. .rite certain consequences of the dynaalc e,ulUbrlue hypoth la 

aril, fro» Ration (52), As Laufer (Reference U) pointed out, a .ore- 

general form of Equation (52) is 

p(Au)2Ym P' u2 T gen) 
' 

(53) 
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where m « 0 or 1 for planar or axi-symmetric geometries, respectively, and 

where the quantity AQ stands for the root-mean-square (dimensional) fluc- 

tuation of the quantity Q.  Here Y is a transformed radial coordinate 

which might be of the type 

Y2 - 2 I Y dr (54) 

We immediately see that the latter choice is unacceptable if n (Ao)2 is to 

be truly similar, because we would then have 

2 

-^- = | (x, n) g(T)) (55) 

because p/p^ is generally a function of both X and Y.  We therefore choose 

Y = Y; that is, we use the premise that similarity in the turbulent energy 

exists in the physical rather than the Howarth-Dorodnitzyn plane.  This 

also implies a certain insensitivity to the geometry, in agreement with 

MorKovin's observations. Thus Equation (53) reduces to Equation (52). 

We will next recognize that the scales are given by 

Density Scale:  p'  = p 
00 

Velocity Scale:  U * u - u(o) 

(56) 

(57) 

were oo refers to conditions outside the wake and (o) refers to conditions 

on the axis.  The first obvious result is that 

P   (Au)' 

Poo u2 
g(n) (58) 

which for the axis reduces to 

.2 
P(o) (Au(o)r 

Poo        u2 
g(o) <■ constant (59) 
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in contrast with the Incompressible wake for which Au(o)/U = constant. 

Since p(o)< p in the compressible wake, the fluctuations are initially 

higher (and much more so for hypersonic wakes) than for low-speed wakes. 

Eventually, of course, p(o) ■ p and the constant ratio of g(o) is attained, 

The radial vari2tion of the velocity fluctuations in terms of the variable 

T1  - | (60) 

where L is the transverse wake scale (to be discussed shortly), obtains, 

directly from Equations (58) and (59) 

£-/A" \   = ijni = f(T)) (fi) 
(o) \Au(o)/     g(o) 

where f(T\)  is another unique function of T),  The universality of this 

function can be tested by comparing (for example) velocity fluctuation 

profiles (Au)2/(Au(o))2 in incompressible flows with the profiles 

p  (Au)2/p(o) (Au(o))  of the present experiment. At any rate, since 

p > p (o), the profile (Au)/(Au (o)) in the compressible wake is somewhat 

thinner than in the incompressible wake. 

The following corollaries can be drawn from Equations (58) and (61) 

w   00 

2 /A  / \2 
p u        (Au/u) 

p(o) u(o)2 (Au(o)/u(o))2 
f(n) (63) 

where w is the so-called velocity defect 

u    - u(o) 
_2  (64) 

00 

and also 

Mo) 2    » «Co)w2  (65) 
u(0) (1 - r)  (1 -w)2 
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where  the density defect 

r  = (66) 
00 

As will be discussed below, the defects W and r are known functions of the 

axial coordinate X so that the X-dependence of the velocity fluctuations 

can be predicted.  In the meantime, we again note the influence of com- 

pressibility on the axial decay of the velocity fluctuation on the axis, 

as given by Equation (66) and the axis value of Equation (62) 

Hf)2 ■ *<°>"2-fe ■ «<0)r^ <67) 

In both cases, we observe that the fluctuation decay is faster it. the com- 

pressible wake because of the decrease in r with axial distance. 

4.2 TEMPERATURE AND DENSITY FLUCTUATIONS 

The prediction of Equation (49) for adiabatic flows together with the 

likelihood of insignificant sound fields allows us to construct the simi- 

larity behavior of the temperature and density fluctuations 

d£ . . Ü (68) 
p       T 

iA£i . 1^1 (69) 
P      T 

where the parentheses again denote rms values. Equation (50) rewritten as 

|T . a . l) M2 ^ (70) 

inmediately leads to the radial profile of the temperature fluctuations as 

normalized to the axis value 

_£_ (uioi)2 (_aT\2 - f(r)) (71) 
P(o) \    u / UT(O)/    

imi 

■43- 



and its corollaries 

P(o) 

P(o) 
P 

Pio) 
P 

m 
m 
m 

I m \  m 

/ (AflZfi     V 
UAp)   io)/p(o)j 

um 

-    fOI) 

/      AT/T      \2 ,._. 
lAT(o)/T(o)/       '     t{r]> 

(72) 

(73) 

(74) 

Here we note the analogies among Equations (61), (71), and (72).  In the 

same spirit, we inquire about the axial variation of the axis values of the 

density and temperature fluctuations.  In analogy to Equation (59) we 

obtain 

"(o) - g(o) 
P(o) 

1/2 
(7 " l) M(o)   e a . w) (75) 

where 0 is  the  temperature defect 

6    = Hoi 
T« (76) 

and where M(o) is the Mach number of the axis. A more convenient expres- 

sion can be given using the experimentally determined (Reference 12) 

relation 

• ■ (7-1) M^w S (77) 

where S is a known .amber on the order of 0.8 related to the turbulent 

Prandtl number. Then 

mü 
T(o) 

i 
S g(o) 

p(o) 

1/2 
(1 -w) (78) 

The ratio of the temperature fluctuations on the axis to the temperature 

difference across the wake is therefore not constant, as Gibson (Reference 4) 

found for the sphere wake in water, but losely follows the behavior of 



* 
- 

the density and velocity defects.  In fact, the density fluctuations 

given by 

1/2 
j^£io 

P - P h) ' iH^f]   (1'w) (79) 

analogous to Equation (78), obvious y Increase with axial distance. 

Both Equations (78) and (79) also predict that at very far distances 

from the body (p(o) » P , w " o), the temperature and density fluctuations 
* 1/2 

so defined approach the value (g(o))  /S. 

The behavior of the fluctuations as given above carry (concealed) the 

surmise that the appropriate density sca'e p' , Is, In fact, given by p' ■> p 
00 

(see Equation (56)).  Furthermore, the constant g(o) Is needed In applying 

these formulas. An Interesting relation devoid of these requirements Is 

the ratio 

i  Ap(o)  \ / I    AU(o)  \  „ (l-r)(l-«) . 
IP«- Pio)) /   lu«- u(o)/       s (80) 

obtained from Equations (59) and (79). Both sides of Equation (80) have 

been measured Independently in this experiment and a check would be much 

in order. 

4.3 SPATIAL DISTRIBUTION 

The velocity, density, and temperature fluctuations are given above in 

terms of the mean-wake properties and particularly in terms of the 

defects w, 9,  and r. This representation is powerful in that it bypasses 

an exact knowledge of the mean-property distribution in the wake. 

Nevertheless, the latter distributions are now well understood for 

compressible wakes in general and, by the results of Reference 12, for 

the wake at hand in particular. To describe the functional forms AuOl.X), 

•tc., we will first list the main features of the mean flow field of this 

wake as given in Reference 12. 
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The coordinates a^e defined by 

Axial ( :oordlnate X = 

X - X 
o 

yv 
Radial coordinate 7] -l 

(81) 

(82) 

Here X Is the actual distance behind the body base, XQ the X-posltlon of 

the effective wake origin (found to lie about 8 diameters behind the base), 

and (CDA)1/2 If the virtual (drag) diameter of the wake; In the present 

Instance* 

(CDA)
I/2  - 0.216 cm 

The wake transverse scale, L, Is given by 

1/2 

L (83) 

and the velocity defect 

/R_A 2/3 

if a 4» (21   -br ; R. - 12.8 (84) W " 373 \6 / x2/3 ' •* 

It thould be noted that the T)  of Reference 12 was formed by using the 

Howarth-Dorodnltryn radius, which was very similar to the physical radius, 

Y, beginning a very short distance away from the axis. 

The density and temperature defects are 

0  -  (7 - 1) M2« w S <85) 

"The value (CDA)1/2 - 0.278 cm given in Reference 12 Is an average 
Including measurements In the up-down direction, less accurate than the 
value 0.216 cm. However, the latter value was used to compute X in 

Reference 12. 

•46- 



and 

e + i (86) 

Again, the quantity ar
2^  appearing In place of S In Equation (38) In 

Reference 12 has been replaced by a more general function, S, of the tur- 

bulent Prandtl number, aT, which varies from about 0.78 to 0.88 along the 

wake, tending toward 0.84 far along the wake (see Figure 35, Reference i2). 

The radial variation of properties Is as follows 

T - T. 

•0.43 T)' 

T(o) 
00 

p(o) 

/"«-"    \gT 
aT " 0.785 

T(o)J 

(87) 

(88) 

(89) 

The values of w, 0, and r found experimentally In Reference 12 are listed 

In Table I.  It will be noted that they obey the above relations 

(Equation (64), for example) only after a certain relaxation length behind 

the transition region. We therefore anticipate that a similar relaxation 

oerlod will be found In the fluctuations, i.e., that the findings of 

Paragraphs 4.1.1 and 4.1.2 may, if at all, fit the data only after some 

distance behind the body.  Based on Reference 12, this distance was a 

minimum of 40 in X, contrr.sted with the distance X at 90 covered by the 

measuiements. 

By combining the equations of Paragraphs 4.1.1 and 4.1.2 with those of 

Paragraphs 4.1.3, the behavior of the fluctuations .long the wake can be 

predicted. For brevity, these combinations arc outlined In Table II. At 

intermediate X's the similarity behavior of the compressible wake differs 

distinctly from that of the incompressible wake because of density factors 

such as the ratio p (o)/pw «nd the defect, r. This intermediate region 
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TABLE I 

MEAN-WAKE PROPERTIES ON WAKE AXIS (FROM REFERENCE 12) 

X-Station X w e r 

0 14.71 0.276 0.754 0.433 

1 20.60 0.222 0.622 0.379 

2 26.50 0.181 0.522 0.334 

3 32.39 0.150 0.435 0.303 

4 38.28 0.137 0.327 0,253 

5 44.17 0.107 0.313 0.246 

6 50.07 0.0951 0.283 0.225 

7 55.96 0.0731 0.231 0.186 

8 61.85 0.0688 0.211 0.167 

9 67.75 0.0615 0.181 0.165 

10 73.64 0.0595 0.171 0.168 

11 79.53 0.0564 0.173 0.133 

12 85.42 0.0559 0.168 0.116 

13 91.32 0.0490 0.149 0.138 

should not be confused with the relaxation region mentioned previously; 

we do still expect similarity behavior with radial distance in the former 

but not in the latter. Again, note that Au/Cu^ - u(o)) and &pl{pn -  p(o)) 

change with X and the former decreases toward its asymptotic Unit Jg(o), 

whereas the latter increases toward its limit >/g(o)/S--limits which will, 

incidentally, be identical if the Prandtl number (and thus also S) is unity. 

The velocity fluctuation decay obeys incompressible rules* only in the 

limit of very large X. 

It remains to evaluate g(o) which, in view of our committment to the dynamic 

equillbvlum hypothesis, should be similar to the Incompressible values. 

Unfortunately, the axi-symmetric experiments of Unferences 2, 3, and 5 

*Theae Include the so-called "final period" of the wake. 
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lack the adequacy and clarity of data from which g(o), which seems to tend 

towards unity near the body, can be obtained at large X.  It is interesting, 

however, that Townsend (Reference 1, Page 135) obtained the value g2 (o) -' 

0.136 in the two-dimensional wake. 

We close this discussion with the remark that the X dependencies of the 

velocity defect, the transverse scale L, etc., as shown above, have the 

exact form exhibited at low speeds, including the numerical values of the 

coefficients (RT for example).  Furthermore, these expressions have been 

validated in the compressible wake by the experimental results of Reference 12 

and thus add to the expectation that the predictions of the DEH will also be 

validated for the fluctuation. 

4.4 CORRELATIONS, SPECTRA, AND SCALES 

There are some definite, although semiqjaUtative. predictions the DEH makes 

concerning the local velocity-temper»cure correlation (cross-correlation) 

as well as the fluctuation spectral density.  If our picture of large-eddy 

equilibration Is correct, then we expect Equation (51) to hold, and princi- 

pally so for the large eddies (low frequencies); the rationale Is that large 

eddies, unaffected as they are by Internal mixing, best represent the 

extreme conditions across shear zones.  In fact, velocity-temperature cor- 

relation measurements (References 10, 15. and 17) show that these two 

quantities are usually strongly (although not perfectly) antl-correlated. 

By the same token, one expects, In the absence of LT0  fluctuations, 

Equation (50) for the temperature-velocity fluctuation ratio to perform 

best at the lower frequencies.  Both these phenomena are Illustrated by 

Morkovln (Reference 10) for the boundary layer. 

The Integral scale of turbulence (I.e., the autocorrelation macroscale) 

should be expected to scale with the transverse scale of the wake mean flow 

A ^ L 

with the constant of proportionality to be determined by the experiment. 

The mlcroocales of the autocorrelation functions will be dlsrussed In a 

later report. 
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SECTION 5 

RESULTS OF MODAL ANALYSIS 

The experimental results are sunmartzed in the form of the axis values In 

Table III.  In this section we shall present the results of the modal 

analysis of the wake turbulence (the frequency-Integrated fluctuation 

Intensities) beginning with the wire-sensible variables. I.e., the fluctu- 

ations In the mass-flow-flux pu and the total temperature T , along with 

their cross-correlation coefficient.  These results, put out by the 

WEB-1V program (Appendix D) derive from the solution of Equation (28) 

(Paragraph 2.6.2) with the Inputs of the latter deriving from the experiment. 

Figure 15 shows the variation of the rms mass-flux and total temperature 

fluctuations along the axis, where the fluctuations are normalized by the 

local (axis) mean values. Note that the total temperature fluctuations are 

In fact quite small, attaining a maximum value of 7 percent In the region 

studied and decaying to about 1 percent at 100 diameters downstream of 

transition.  This Is considerably below all other fluctuation levels and 

especially, as will be seen below, the fluctuations In the static temper- 

ature. We already see an Indication that Morkovln's strong Reynolds 

analogy (Reference 10) for adlabatlc flows, which Implies the criterion of 

Equation (49), is at work. The correlation coefficient r  between mass flux 
mt 
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FIGURE 15.  AXIAL DEPENDENCE OF THE AXIS VALUES OF THE  IMS  NORMALIZED MASS-FLUX AND TOTAL 
TEMPERATURE FLUCTUATIONS AND THETR CROSS-CORRELATION COEFFICIENT. 
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TABLE III 

TURBULENCE PROPERTIES ON WAKE AXIS 

X-Statlon X Au/u Ap/p Au/di^ruO))) Ap/Q^-pC 

0 14.71 0.210 0.142 0.549 0.186 

20.60 0.156 0.148 0.548 0.243 

26.50 0.113 0.136 0.511 0.27? 

32.39 0.0937 0.154 0.532 0.356 

38.28 0.0793 0.125 0.501 0.369 

44.17 0.0531 0.114 0.442 0.350 

50.07 0.0230 0.100 0.220 0.344 

55.96 0.0361 0.0993 0.458 0.434 

61.85 0.0350 0.0852 0.473 0.424 

67.75 0.0280 0.080 0.430 0.420 

10 73.64 0.0252 0.0781 0.399 0.389 

11 79.53 - 0.0b49 - 0.423 

12 85.42 0.0224 0.0658 0.378 0.500 

13 91.32 0.0192 0.0591 0.373 0.368 

and total temperature, also shown in Figure 15, implies strong correlation 

near the transition zone, but the fluctuations become totally uncorrelated 

further downstream.* 

The variation of Apu/pu and AT /T with radius Y is shown in Figures 16 and 

17, typically represented by a radial survey about the middle of the wake. 

The modal analysis according to Equation (31) har yielded the local tempera- 

ture (density) and axial velocity fluctuations normalised to their respective 

mean values, the sane quantities normalized to the local mear differences 

*Stnce cross-correlations should be ±1 in unsteady laminar flows, it is 

suggested that the variation of r  in 0 7.   40 is indicative of the pro- 
mt 

gression from the transitional to the fully established turbulent regime; 

this agrees with the relaxation (Xai40) distance of Reference 12. However, 

this is not to be confused with the xpected behavior of rar,  about which 

more will be said later. 
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across the wake, and the velocity-temperature correlation coefficient which 

is, of course, equal In maguitude but opposite in sign to the velocity- 

dens 'ty correlation.  These quantities are available at the computer output 

plotted versus the physical radius Y in inches as well as the normalized 

radial distance r]  - Y/L where L is the transverse wake scale available from 

the mean measurements of the WEB-V computer output (Reference 12). 

These turbulence data will be discussed first, as plotted, without regard to 

the DEH and Its extension to compressible flows.  We note, first, the repre- 

sentative plots of Figures 18, 19, 20, and 21.  Both modes peak at some 

distance off the axis, with the peak In the density fluctuations higher and 

farther out from the axis.  In terms of their local values, the velocity 

fluctuations are considerably lower than the density fluctuations; since the 

Mach number In the wake rangeo between 1.5 and 3 and the total temperature 

fluctuations are very small, this behavior Immediately confirms the general 

trend of Equation (49).  In terms of the differences across the wake, these 

two fluctuations are very similar and their maximum values are about 50 per- 

cent of these differences, In contrast with the value of 100 percent which 

one would be led to believe from rough dimensional arguments.  The decay of 

the axis velocity and density fluctuations (normalized with their respective 

local mean values) with axial distance Is shown In Figure 22. 

We can best Illustrate the compressible-Incompressible dissimilarities by 

summarizing the above dlrcusslon by the plots shown In Figures 23 and 24. 

In the former, the rms axial velocity fluctuation normalized with the exter- 

nal velocity Is shown to decrease along the axis.  As predicted in Table II, 

this fluctuation decays faster than the (-2/3) power of X; this should be 

compared with the Incompressible behavior (References 2, 3, and 5).  At this 

stage the cause can be attributed to the density factor (1 - r) (cf. Table II 

and Equation (67)) which of course increases with 7.  In Figure 24, the rms 

density ami axlaj velocity fluctuation values on the axis are shown as 

functions of X, nonnalized to their respective differences p^- p(o) and 

uoo " u(o) across the wek-. Despite the data scatter, it is quite 
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FIGURE 22. AXIAL VARIATION OF THE  RMS  AXIS VELOCITY (TOP) AND DENSITY (BOTTOM) 
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obvious that these quantities are each far from unity and in fact change in 

opposite directions — the velocity fluctuations decreasing, and the density 

fluctuations increasing, with increasing X.  A quick look at Table II 

indicates that this behavior agrees well with the dynamic equilibrium 

hypothesis. 

Still, the central test is the behavior of the rms fluctuations normalized 

to the axis fluctuation with radial distance; these are plotted against the 

normalized radius in Figures 25 and 26 for X >44.  For the velocity 

fluctuations, the apparent lack of perfect similarity is due largely to 

experimental scatter.  The role of similarity behavior is shown better in 

the density fluctuations (Figure 26) and here it will be seen that by 

replotting these points according to Equation (72), their dispersion is 

considerably decreased.  This dispersion is much worse for X < 44 than 

Figure 26 indicates; the peat-  n «ach curve of Ap/Ap(o) exceeds 2.0 nearer 

the body.  A further point worch retaining from Figures 25 and 26 is that 

the peak in the density fluctuation is farther out (near r) > 2) than it is 

for the velocity (cf. Figure 25).  This difference is too large to be 

explained by arguments of a "thicker temperature wake" and, as will be seen 

shortly, practically vanishes when the data are replotted by the method 

suggested by the DEH. 

A test of Equation (50) which enunciates Morkovin's strong Reynolds 

analogy (Reference 10) (a corrollary of the DEH) was also made by plotting 

th- velocity-temperature correlation, r—, in Figure 27. The r—versus T) 

plot presents about 250 experimental points and shows that, with very few 

exceptions, r  ranges fron -0.8 to -1.0.  No systematic radial variation 

was found, but anti-correlation weakened somewhat (fron -1.0 to -0.8) with 

increasing X.  This behavior, already hinted by the weakness of the total 

temperature fluctuations AT , indicates that the strong Reynolds analogy 

was very active in the wake. Note that Kovasznay (Reference 15) and 

Klstler (Reference 17) both found an r(jT of about -0.7 almost constant 

with distance across a supersonic turbulent boundary layer. Physically 

Interpreted antl-correlatlon implies that the wire Is struck alternately 
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by c, i< mdu,c or hot „d tlm „^ nmu   1Uuatratii)g ^ ^^^ 

rapU ««.,„ acro.s  the .h„r IOIle ^ the   ^^ r(!ach o£ 

eddies. * 

So f.r, tk. d.t. h,ve b..„ purpcefully pr...„t.d ,„d dl8cussed in a 
»»„„„ .howmg tl,e lMdc<!uacy o£ low.ai,eed argiiiiients ^ ^^  ^ 

beh,vlor of th. „„„..^ turbuleiit wake  if the8e arguTOn|;s ^ 

inde^i sp.cl.1 cas« of the DE„ ta the co„,tant.deI,8lty HmU| then 

data a. l„dlcated b, tha fo^ia. of Paragraph 4.1.1. We shall present 
these correlations below. 

First. „e look for sin.ilarity in the radial profiles of velocity and 

density fluctuations.  In Figure 28. the velocity fluctuations are 

P otted as per Equation (61). and this plot should be Spared wich that 

of Figure 25. There is obviously little difference between these two 

illustrations, which en be attributed to both the unavoidable data 

scatter and the fact that the density gradients extant in this .easure- 

ment are too snull to illuminate the difference. In any event, the form 
of the function 1*0 is quite clear and is. as expected, very close 

numerically to it. form at low speeds (see Reference 1. Figure 7 4 

Reference 3. Figure 9. and Reference 5. Figure 17). including the location 

and value of the maximum.* This forms a strong argument that the DEH 

correctly describes the compressible wake. 

The effect of proper correlation is the more evident in the density 

fluctuation, of Figure *. Here the absence of large total temperature 

fluctuation, collap.e. the data to a form very much the same as in 

Figure 28. exactly a. Equation. (61) and (71) predict; more importantly 

the peak in the den.ity fluctuation, .hift. in magnitude and location so 

a. to make that po..ible. To illu.tr.te thl. .hift. Figure 30 ha. beer. 

<Comp.ri.on with low-.peed d.t. i. h.ndic.pp.d by the nonunlforill ^„^ 

by which th. wake radlu. ha. been normalized in th. referent  quoted. 
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plotted. Here the velocity and density fluctuations have been again 

plotted as in Figures 25, 26, 28, and 29; the shift in the peak is 

clear.  In Figure 30, as in the previous illustrations, it is also clear 

that at higher r)  (near the wake edge), the distribution f differs 

between the velocity and density fluctuations. This is attributable 

to the effect of the intermittency. 

According to Equation (67), the axis rms velocity fluctuations, 

normalized by the free-stream velocity u« should decay as the (-2/3) 

power of X only if multiplied by the density factoi (l-r)1/2; such a 

plot is shown in Figure 31. The agreement with the predicted decay law 

is unsatisfactory; with the possible exception of the last few experi- 

mental points, the data decay faster than the (-2/3) power of X, 

although, in fairness to the DEH, not as fast as the Au^/u« plot of 

Figure 23 indicates. 

Better agreement obtains when the form of Equation (59) is tested as 

shown in Figure 32. In apite of the scatter, the velocity fluctuations 

normalized approach clearly the limit-^(o) - 0.38 which the DEH, 

fortified by Townsend's data (Reference 1), indicate. On the same figure, 

the density fluctuations attain the same numerical limit as predicted 

by Equation (79). Thli behavior is quite gratifying because the ordlnates 

here are formed by grouping various independent measured experimental 

quantities. 

A further manipulation of the data of Hgure 32 removes the need for a 

numerical choice for g(o) and reduces the scatter: such is the ratio of 

the axis density to the velocity fluctuations in each case normalized 

with their mean differences. This ratio should, according to Equation 

(80), increase in the similar region and tend toward l/Sal.18 at very 

large X. The solid line in Figute 33 is the quantity (l-r)(l-w)/S as 

obtained from the mean measurements, and the agreement with the data is 

very good. 
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The decay of the wake temperature fluctuation analogous to the velocity 

fluctuation decay of Figure 22 ha« been predicted on the basis of the 

strong Reynolds_analogy (Equation (50)) and the relevant ratio is 

Plotted versus X in Figure 34. Consistent with the small total temper- 

ature fluctuations found, this ratio tends toward unit (i.e.  toward 

the_verification of the analogy and of Equation (50)) at large values 

of X.  Note that in this and several previous illustrations, a relaxation 

distance of about 40 wake (drag) diameters is found, consistent with 

the mean-flow results (Reference 12). Other forms of the temperature 

fluctuation have not been plotted because the conversion of. say 

AT(o)/T(o) to AKo)/rM is a simple matter. 

In order to test the analogy in the radial direction, the ratio of 

Figure 34 is also plotted versus T) in Figure 35.  There are. in fact 

two general types of behavior this ratio follows:  nearer the base it 

peaks slightly towards unity about one-half the wake radius awny from 

the axis; farther downstream, the ratio i. very clo.e to unity throughout 

except near the wake edge, where it increases greatly beyond unity. Both 

these pehnomena can be attributed to the intermittent nature of the 

turbulent front. In the first instance (Figure 35-a). the local total 

temperature fluctuations ^ are important enough to destroy the analogy 

within the turbulence itself, and the ratio lies sensibly below unity. 

Near the actual wake edge.* however, that pseudoturbulent component due 

to the intermittency Jtself emphasize, the density fluctuations with the 

result that a peak appears in the ratio. Farther downstream (Figure 35-b) 

the influence of ^ has decreased, but pseudoturbulent density fluctua- 

tions due to the intermittency appear at the wake edge, thickening the 

arent turbulence diameter (Figure. 28 and 29) and the ratio is thereby 

duven to high v-^ue. 

*This 1. the edge as defined properly by Intermittency measurements, 

which will be described In a later report. 
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SECTION 6 

INTEGRAL SCALES 

The integral scales of axial velocity and temperature (density) were 

computed by the WEB-V1I program (Appendix E) as a function of position, 

according to the scheme of Equations (47) anc (48). The results are 

shown in Figures 36 through 39. As already discussed in Paragraph 4.1, 

there are intuitive arguments that the integral scales (i.e., the 

autocorrelation macroscales) should be locally proportional to the 

characteristic length, L, of the wake and thus grow with the 1/3 power of 

axial distance. To date, however, no information has existed on the 

numerical differences between the density (temperature) macroscale,Ag. 

and th« axial velocity macroscale, t^or  their radial variation. 

Figure 36 shows the variation of the axis values of the As normalized 

alternately wlth^ and with L. There Is little doubt that on the axis 

the ratio A /L Is constant In the similar region of the wake, 

^ (T)- o) - 0.48 
L 
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The r.dl.l vrutlou of A, iB  8hown ln Flgure 3^  Inimec,iately down8tream 

of the transition zone, the density .„acrosc.le decreases to a .Inlmum off 
the axis and. I« f.ct. attain8 , value M ^ ^ O#5A(T) _ ^  ^^ 

that the scale Increase, systematically „1th distance, and In the similar 

Portion (7 > 55.9) It Increases linearly from the axis to the apparent 

edge of the wake where As - 2A s (T, . 0).  In termB  of ^  tran8ver8e 
scale, L this Implies 

As ("H - o) - 0.5 L 

AS en - 3.5)  » L 

with a linear variation In between. 

As seen In Figure 38. the axis variation of the axial velocity auto- 

correlation macroscaleAT cannot be pictured effectively because of 

excessive data scatter due In large part to scatter In the computer 

output in the velocity spectra at very low frequencies; the trend with 

Increasing X Is fairly obvious, however, with the limiting value of AT 

lying between 0.5 L and L.  Ihere 1. less doubt on the radial variation 

of AT. and from Figure 39 we see that here In fact Its value Is practically 
constant at AT - AT(o) across the wake. 

The conclusion drawn Is that the expected Intimate connection between 

As (and AT) with L 1. indeed verified.  It Is alf,o evident from Figure 36 

and to some extent from Figure 38) that the equilibrium value, of the 

scales are arrived at by decrease fro. tne higher values near the transition 

region.  Ihl. 1. exactly what 1. expected In event, where large-.cale 

phenomena, .uch a. laminar In.tabllltle.. break up Into the .mailer .cale 

turbulent .tructure.  Very much ehe .ame re.ult. have been lately obtained 

by Gavlgllo and Favre (Reference 19). 

Figure 40 .how. the ratio of the macro.cale Ag to the maeröseale fe  In 

accordance with Figure. 37 and 39. thl. varle. fro« about 0.5 on the axl. 

to about unity at the edge of the wake. 
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FIGURE 40. RADIAL VARIATIOM OF TM RATIO OF THB DEHSITY TO THE VELOCITY SCALE 
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An important byproduct of the scale measurement is the reassurance that the 

experimental conditions are capable of producing valid statistical averages. 

The validity condition obviously is that the hot-wire samples a sufficiently 

large number of macroscale-size eddies during its exposure to the local 

turbulent flow.  In this experiment, such local conditions are (for exped- 

iency) measured by traversing the wire radially across the wake (cf. Figure 7) 

and then by processing the data once all the necessary traverses are taken. 

The question therefore arises as to whether the traverse speed is so fast 

that the wire does not remain at any particular point in the wake to sample 

a sufficient number of eddies.  Each traverse lasts approximately 10 seconds, 

implying that the wire remains approximately 1 second in a radial segment 

of the size of the macroscale (about 1 mm).  For the prevailing axial mean 

velocity of, typically, 50,000 centimeters per second, there are thus about 

a half-million eddies in the aggregate from which the average is drawn -- 

a good statistical average. 
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SECTION 7 

SPECTRAL-MODAL ANALYSIS 

We shall now present the results of the spectral-modal analysis wherein the 

distribution of fluctuation intensities will be further expanded into its 

Fourier contributions.  Before discussing these results, we will utilize 

the typical datum from the VEB-VII program output, shown in Figure 41. m 

order to define terms, dimensions and units. 

There are three main representations of interest for each mode and at each 

point in the wake.  First, we want to know how much of the total hot-wire 

signal is due to density and how much is due to axial velocity fluctuations. 

Thus, within a l-kilocycle-per-second passband around each frequency, we 

define bya(f) thu root-mean-square density fluctuation contribution 

(normalized with the local mean density) and byT(f) the corresponding 

contribution of the velocity fluctuation. Referring to Figure 41, these 

results are shown on the second and third columns as a function of the 

frequency, shown In the first column.  The units of these quantities are 

(kcps)-!; to convert thes« to (cps)-l. I.e.. seconds, one divides by 1000, 

and this has been done In the Illustrations plotting these quantities.  The 

fourth column lists the spectrally resolved cross-correlation coefficient 

of density and velocity, which is of course nondlmenslonal. 
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A «con rePr,..nt.tlo„ of hM««UI Importance ,i« the fractlon of the 

T STT" ^""^ ^" c',ntaln", in the'""- " •—■ 
^  U°(   

0 ." Che rat10 ^ the TOa-,Uare de",U' "-«""«■ ^- "d u ,f, ln the l-kll„cycl.-p.r...Co„a P...1..„H around the frequency , 

to  th. to«! (fr.que„c,.l„t.gr.t.J) meon-.qo.r. „„.u, tlu<;tuatl()„ ,2 „ 

the M. point in th. „ak.; note that the conneetlon between o(f) and r 
(and al.0T(f) andr, h.ve bee„ ^  by Equaelons W) ^^^ ^ 

Thi. ratio, and the corre.pondlng ratio T2(f)/T
2, are found „ ^ .^ 

and seventh colunm. of Figure 41, Again, the units here are In (keps)'1 

or milliseconds. 

One can employ the third representation, shown in the eighth and ninth 

columns, to compare the spectra by the expedient of normalizing the spectral 

densities by their respective zero-frequency li.its.  TWse normalized 

spectral densities are then dimensionle.s and are denoted as 7
2(f)/a2(o) 

and r (f)/T (0).  In thl8 form  the 8pectra can be ^^^ ^^ the ^^^ 

ery  one-dir^nsional spectral density description, such as shown in 

Reference 18.  To thi, end. the last two column, of Figur. 41 .I,o ** 

appropriate nondlmen^onalization. of the frequency into the forms 
r A 

"T 

fA, 

u 

fA 
ns   " 

(90) 

(91) 

where AT and As are  the respective integral .cales and u is the  local mean 
veloc.ty. 

With this  Introduction,   the numerou.  illu.tration,  ,hown of ,pectral  den,i. 
tie, are ,elf.exPlanatory.    m drawing ,omparigoni. and concluilonfl  ^ sho.jld 

be noteu that.   In the axial direction.  « .hould normally look for an evolu- 

tlonary adju.tment of the ,p.ctr. within the  relaxation, zone  (X < 40) and 

perhap. ;n  invariant behavior in th. r.gion of .Ur.pr..ervation7   In the 

radial dlr.cti    . w. dr.w guideline, from the result, of the modal analy,i, 

and  the unpubli.h.d r..ult. of th.  Int.rmltt.ncy m.a.ur.m.nt..     Thu, ^ ar. 

lnter..t.d in th. following r.gion.:     (1)  th. wak. axl.  (r)-0). wh.re the 

^* I /«■■■^■, 



fluid is fully turbulent, (2) the region of ■naximum shear (T) = l.l) „hich 

coincides with, and obviovaly gives rise to. the maxima in the fluctuation 

magnitudes (compare Figures 28 and 29). (3) the location, in the statistical 

sense, of the wake front (T) - 2.11), and (4) the wake edge which can be 

conveniently defined as the point at which the mean velocity distribution 

u is 1 percent of its axis value (i.e.. 0,01) and which is thus located 

(Reference 12) at "H - 3.28. 

A good first look of the distribution of spectral densities is given by 

Figures 42 and 43. These serve to bring out the unusual feature of a 

fluctuation concentration (peak) at a scale which, from Figure 42, is about 

6 times and. from Figure 43. about 12 times ehe integral scales.  In 

Figure 42, drawn from the relaxation zone (X - 26.5) and in Figure 43, 

taken from the self-preserving region (X - 56.0), this peak is generally 

absent from the axis and the wake edge and seems to become most intense In 

the region 1< T) < 2, i.e., between the maximum shear and the front location. 

We shall return to the discussion of this feature in the comments which 

follow. 

Turning to the spectra on the axis. Figure 44 shows that, initially, the 

wire signal is predominated by velocity fluctuations uniformly greater than 

the density fluctuations at all frequent, -r.: farther downstream, of course, 

the situation is reversed (as the modal an* ysls has already shown), 

although at X - 61.9 the preponderance ot ehe density fluctuations is mainly 

due to the larger eddies.  In the same vein, consider the results at 

X - 26.5 of Figure 45. Here (JarT, but the velocity pridominates at the 

lower frequencies, with the density taking over a range of higher frequencies 

Figure 46 shows that the density fluctuation density (in terms of fraction 

of the total local density fluctuation) is distributed with frequency in a 

way independent of axiaT position, and this similarity becomes quite 

remarkable, in fact, when the spectra are normalized in the manner of 

Figure 47. By contract tj the Utter, which presents data beyond X - 56, 

consider that the denk:.tv spectral shape is much more scattered in the 

-90- 
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FIGURE 44. AXIAL EVOLUTION OJ  THE LONGITUDINAL SPECTRA OF RMS  DENSITY AND VELOCITY 
FLUCTUATIONS (NORMALIZED WITH THE LOCAL MEAN VALUES) ON THE WAKE AXIS. 
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FIGDU 46.    LOMGITUDINAL SPECTRA OF THE MEAM-SQUARE DENSITY FLUCTUATIOUS  (NORMALIZED VITH 
THE UrTEGRAIED FUICXlil 'IONS) OH THE AXIS OF THE SELF-PRESERVDIG WAD. 
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relaxing wake, as the data in 14.7 < X < 50 plotted in Figure 48 show. 

Unfortunately, no such conclusions can be drawn from Figure 49 for the 

for the velocity fluctuations, due to the large scatter.* 

In the region of maximum shear. Figure 50 again reflects the predominance 

of density fluctuations, whether early (X - 26.5) or late (X - 85.4) in the 

wake.  At this radial position in the wake, the observed peak sets in at 

full strength.  In Figure 51, the fractional velocity fluctuation density 

clearly shows the evolution of the peak at X - 26.5, 50, and 85.4. 

Initially, the peak is located at higher frequency (n at 0.2) and occupies 

a higher percentage of the total fluctuation; later, it shifts to lower 

frequencies and decreases in magnitud«.  A similar result is seen in 

Figure 52 for the density fluctuations as they develop in the relaxation 

zone.  By contrast, similar results farther along in the wake, shown in 

Figure 53, show little difference from X to X, and in fact the percentage 

fluctuation occupied by the peak remains quite constant. On the other 

hand, the nondlmenslonal plot of Figure 54 destroys this constancy; even 

so, the peak Is well discernible.  Figure 53 should be contrasted with 

Figure 55 which once more points out the unsettled nature of the spectrum 

during the relaxation process.  Inspection of Figure 55 reveals the evolution 

of the peak Itself and also the accompanying variation of the high-frequency 

components (also shown In Figure 52).  It Is evident that Fourier contri- 

butions of this peak are to be found within a large range of frequencies:  as 

the peak shifts to the left, so do the higher-frequency components.  As we 

turn to Figures 56 and 57, we observe that not only has the scatter In the 

velocity spectra decreased (compare Figure 49), but the peak behaves 

differently.  Specifically, It seems to disappear completely at the far 

*Aa Is easily seen from the spectra, the velocity fluctuation density results 

are always accompanied by large scatter, partly because these fluctuations, 

being smaller than those of the density, Infringe on the error margin of 

the measurements. 
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distances (X - 67.7. 85.4. 91.3). We therefore conclude that, whatever 

mechanise, is responsible for this peak, it operates mamly through the 

density rather than the velocity. 

A generally identical sort of behavior of the spectral densities can be 

found along th. tuxbulent front (T) - 2.1). as can be seen f.om the following 

group of illustrations.  Of t.ese. Figure 58 shous the well-established 

decreases of the densities in terms of fractions of the local mean values, 

and the tendency of this decrease to occur primarily in the larger eddies! 

Figures 59. 60. and 61 use the alternate spectral representations to 

illuminate the evolution of the spectra with axial distance.  Again, the 

shift of the peak to lower frequencies and its decrease with distance are 

perfectly clear.  It is furthermore obvious that, as noticed previously, 

the density fluctuation density retains the evidence of this peak for a' 

perceptibly longer axial distance. 

As a final region of interest, consider the wake edge wUch. in view of our 

previous findings, can be thought as lying around I) - 3.3.  The nondimensional 

spectra of the density fluctuations for this radial position have been 

plotted in Figure 62 in the self-preserving region.  This plot verifies 

what was already indicated, to some extent, by Figures 42 and 43. i.e.. 

that the spectra have returned to a normal shape, the peak being hardly 

discernible. 

To formalize what is learned about the radial distribution of spectral 

densities, we present Figure 63, where the nondimensional density spectra 

have been plotted for all radial positions, at the farthest downstream 

position investigated (at X - 91.3).  The appearance of the peak here is 

quite weak. 

An overall conclusion which can be drawn from the inspection of the spectra 

is that, the observed peak aside, there Is little difference between them 

and what Is usually observed In low-speed turbulent flows In which a certain 

amount of homogeneity and Isotropy are obtained.  In Figure 64. we compare 

th« present results (typically those shown In Figure 63) with spectra 
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obtained by Favre (Reference 20) behind a grid.  A commonly ueed analytical 

expression for the one-dimensional velocity fluctuation spectrum is also 

shown for comparison  These three spectra differ little for eddy sizes 

larger than the integral scale, but there Is considerable dlsagrerment 

among the three at the higher frequencies.  In fact, the fluctuation 

density thus nomallzed shows that In the compressible wake studlec the 

fluctuation density Is, for eddies the size of the Integral scale, one-half 

as large as at low speeds. 

The new and, to a certain degree unexpected phenomenon, Is the appearance 

of the peak or prominence In the spectra.  We have seen that this phenomenon 

shows certain organized traits which will be used, In the ensuing discussion, 

to discover Its origin. 

We have noted that the peak behaves as follows:  (l) It appears strongest 

about halfway between the wake axis and the wake edge, diminishing toward 

the axis and the edge; (2) It appears most markedly In the Initial 

(relaxation stage) and thereafter decays; (3) the peak frequency Is Initially 

quite high (tending toward a length scale approaching the Integral scale 

of the turbulence) but thereafter decreases; (4) the peak Is more pronounced, 

although not by very much, In the density rather than the velocity spectrum. 

To these we add two additional observations:  (5) when the peak frequency 

Is plotted versus the radius at various X as In Figure 65, we note that In 

the usual dimensional units the frequency Is on the order of 50 kilocycles 

per second at the beginning, and that Its previously noted decrease with X 

brings It closer to an average value of between 20 and 30 kilocycles per 

second.  From Figure 65 one further sees that the value of the peak 

frequency tends to attain a maximum at about the midpoint between the 

axis (T) - o) and the edge. (We shall return to the use of these phenomena.) 

Last, the hot-wire signal was passed through an Intermlttency circuit whose 

function war to rectify the turbi'lence component and mark, by an on-off 

signal, the entrance and exit of the wire Into the zones of turbulence. 

The spectrum of this output signal was meftsured and was found to be 
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characteristically Identical with the total wire output.  The peak, 

especially, survived the rectification process and appeared Intact In the 

rectified spectrum.  The Utter Is, In fact, the same as the Schmidt-trigger 

output spectrum whlc'' Corrsln and Klstler (Reference 21) measured In the 

turbulent Interface of a jet and found to be of the Polsson type. 

The latter test provides the strongest first clue as to the origin ot the 

peak, namely that It Is due to'the fluctuations arising from the corrugations 

of the Interface rather than the turbulence within these corrugations.  If, 

roughly speaking, the Intermittent signal Is thought ol as a superposition 

of turbulence on a random train of rectangular waves, then the superposition 

will carry over to the spectrum which should. In principle, be similarly 

decomposable Into the bona-flde spectrum and the pseudoturbulent front 

signal.  Returning to point (5) and Figure 65, we add here the observation, 

that when the "zeros" of the rectified wave were measured, they yielded a 

characteristic frequency (crossings of the wire Into the turbulent front) 

also of about 30 kilocycles per second. In agreement with the spectrum 

measurement results.  This frequency naturally also decreased near the 

axis and again near the wake edge. Implying that Figure 65 shows the 

behavior of the front rather than of the turbulence Itself. 

Comments (I) through (4) can now be put Into proper context.  If our 

hypothesis Is correct, then the front pseudoturbulence should be most 

Intense In regions of the most Intense Intermlttency, which occurs at about 

the middle of the wake radius; this la In agreement with Comment (1).  The 

pseudoturbulence decay, commented on In (2) Is, of course, fully predictable. 

Observation (4) Is also easy to Interpret because the momentum exchange 

between the large corrugations of the front and the external flow is 

probably much more efficient than the exchange of heat.  On the other hand, . 

the exact Interpretation of the frequency shift Is In some doubt.  If our 

hypothesis Is true that the front (Interface) Is Indeed weakly periodic, 

then this frequency should be characteristic of the wavelength of tlie front 

corrugations.  Because the axial velocity of the fron*. Itself unknown, 
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raub,  ary lii the axial direction, at least Initially, there Is little useful 

information the initial peak frequency shift can supply.  At the same time, 

the apparent relaxation of the peak frequency location to about 30 kilocycles 

per second (see Figure 65) is consistent with observations (Reference 22) 

of the frequency of "zero occurrences" which was also of about 30 kilocycles 

per second.  As we saw from the spectra, this corresponds to a scale about 

12 times higher than the typical macroscale size, which implies a length of 

between 6L and 12L where L Is the transverse scale of the wake.  From 

measurements of the intermittency and zeros, the former agrees with the 

microscale of the wake front and is thus advanced here as a representative 

value of the wavelength of the front. 

In summarizing, the only new phenomenon emerging from the spectral measure- 

ments is not necessarily the inevitable mixing of the turbulent signals with 

the paeudoturbulence of the front, but rather that the latter is not, 

apparently, truly random. This organization of the latter into a weakly 

periodic structure serves at least as an identification of the pseudo- 

turbulent action and could be of potential use in separating the turbulent 

from the pseudoturbulent phenomena. 

The discussion of the modal-spectral analysis will be concluded with a 

brief glance of the spectral distribution of the velocity-temperature 

cross-correlation coefficient, as presented in Figure 66.  It is seen that 

anti-correlation is generally most perfect for the largest eddies lying 

on the wake axis near the transition zone, while it is poorest for the 

smallest eddies, again on the axis, but far downstream.  It is especially 

interesting that correlation is generally best for the largest eddies at 

any rate, verifying Morkovin's conclusion that these eddies are the ones 

responsible for transport across the gradient. 

The errors Involved in this measurement are in general very difficult to 

estimate accurately.  Estimates can only be made of the sources of error, 

and the specific techniques reducing such errors can be equally well 

identified. Thus, major error-producing mechanisms were (I) the Inherent 
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.ltgnment difficulties of -xi-.y^etrlc .odels. (2) slight differences in 

re-installing and re-aligning the modfe' each titne it had to be removed fro« 

the test section. (3) not fully satisfactory wind tunnel flow (from the 

standpoint of uniformity). (4) differences in .ire characteristics, since 

the inevitable wire breakages required the use, of many wires.* and 

(5) unavoidable imperfections in the transfer-function technique.  On the 

other hand, the care exercised in calibrating wires and identifying the 

»train gage problem has been of great help in reducing anomalies in the 

data. 

By neglecting the sound fluctuations in analyzing the data we have in 

effect stated that the normalized pre.sure fluctuation, are insignificant 

compared to the density and temperature fluctuations.  In this context the 

self-conai.tency of the experiment can be checked by computing the pressure 

fluctuations induced by velocity fluctuations as 

f*-}*2 ftf (92) 

where M ii the Mach number. The  following tabulation presents result, 

obtained for two radial location, at 7 - 14.7.  The agreement with the 

imposed condition seem, very .ati.factory, particularly away from the axi.. 

Compari.on of Pre.sure and Density Fluctuations 

x-Üisftl M awu)        (AP/P) (AP/P) 

0 1-37       0.24        0.075       0.120 
0-10        2-76       0.055       0.016       0.16 

The large fluctuation level, encountered naturally ca.t .ome doubt on the 

validity of the technique and the analy.i. u.ed to reduce ehe data.  Speci- 

fically, at lea.t three po..ible sources of error ari.e:  (1) the wire 

heat tran.fer characterise may be highly nonlinear over the range of the 

!    ?? l*arned U thtt  wlth critical or delicate model geometrle. 
and equally delicate hot wire«, one obtain, the data a. fact a. nractlcal 
without dlaturblng the model In the meantime. 
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fluctuations, (2) the wire may become sensitive to the transverse as well 

as the axial component of the fluctuations in the velocity vector, and 

O) the fluctuation modes interact nonlinearly among themselves so that 

the modal analysis into entropy and vorticity fluctuations is invalid. 

Because higher-order moments in the turbulence variables greatly complicate 

the formulas, an exact computation of the errors due to these nonlinear- 

ities is impossible, although some rough estimates can be made.  Thus, the 

heat transfer characteristic of the wire is more linear (Re0 ~ Nu0) at the 

lower Reynolds numbers than at the higher ones and thus derivatives such 

as c> Nu0/dReo are very small; the instrument is therefore more linear at 

these low Reynolds numbers.  The inclusion of nonaxial velocity fluctua- 

tions, roughly speaking, sets an error in (Au/u) of «bout 15 percent for 

fluctuation on the order of 0.2, but the error decreases rapidly with the 

fluctuation level, i.e., as one moves away (axially or radially) from the 

point of maximum level.  The nonlinear interaction of modes is difficult 

even to estimate except perhaps for interaction involving sound (see 

Reference 15). 

There is, too, the problem of possible distortion of the mean measurements 

because of the high turbulence level.  Fortunately, the reduction of the 

mean data rested on the static pressure which is largely insensitive to 

the fluctuations and on the total temperature which was not found to 

fluctuate much.  These facts, coupled with the insensitivity of the pitot 

tube to the turbulence, indicate that the (p-,, p, T0) group of measurements 

should be always preferred over the (p_,, p, Rt:0) group for mapping the 

mean field in highly turbulent flows. 
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SECTION 8 

CONCLUSIONS 

On the basis of the work performed to date, the following conclusions can 

be drawn regarding the turbulent wake investigated: 

(1) The transition to turbulence of the axi- 

symmetric was clearly triggered by the 

amplification of a laminar instability. 

The highest local fluctuation levels 

observed lay in or immediately downstream 

of the transition zone. 

(2) Th^ overwhelming majority of the turbulence 

properties tended to relax into a self- 

preserving form within a region of about 

40 virtual diameters downstream of Uansition. 

However, the possibility exists thet the 

relaxation distance it in general a function 

of the free-stream flow parameters. 
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(3) It has been verified that, on account of the 

small total temperature fluctuations measured, 

the so-called strong Reynolds analogy holds 

for wakes produced by adiabatic bodies. 

(4) The radial distributions of the temperature 

(density) and axial velocity fluctuations, 

when scaled by factors drawn from the Reynolds 

analogy and the dynamic equilibrium hypothesis, 

appear to be identical with each other and to 

their low-speed counterparts.  This similarity, 

occurring in the physical rather than the 

Howarth-Dorodnifczyn plane, verifies that the 

equilibration nrocess is local and maintained 

by the larger eddies. Thus, the velocity 

and temperature fluctuations are well anti- 

correlated, mainly for the larg- eddies. 

(5) The axis values of tht velocity and temperature 

fluctuations are likewise in agreement with 

the qualitative and quantitative features of 

the dynamic equilibrium hypothesis. 

(6) The velocity auto-correlation macroscale is, 

within the scatter, equal to the transverse 

wake scale, L; it is fairly constant with 

radius.  In the self-preserving region (by 

contrast), the density auto-correlation 

macroscale is about 0.5 L on the axis and 

increases towards L at the wake edge; these 

two scales arc not therefore everywhere 

equal to each other. By way of comparison, 

the maximun shear zone occurs at 1.1 L, the 

statistical wake front position is at 2.1 L, 

and the wake edge at 3.3 L. 

•124- 



(7) The normalized spectral densities of the 

velocity and temperature are virtually 

identical and uniform with radius in the 

self-pre»erving region.  They are identical 

with the low-speed wake velocity fluctuation 

spectrum at the low frequencies, but of de- 

creased intensity at frequencies corresponding 

to (and higher than) the macroscale. 

(8) The spectral densities art distorted by the 

pseudoturbulence generated by the wake front 

intermittency, which is weakly periodic with 

a wavelength of about 6 L.  The relaxation 

length of this pseudoturbulence appears to 

be longer than that for the turbulence within 

this front. 

It should be reemphasized that the study presented here deals with an 

essentially steady-state system where Eulerian statistics are performed by 

an instrument stationary in a flowing gas.  By this process, the resulting 

map of statistical properties contains a mixture of both the turbulence 

and the pseudoturbulence of the front. This composite picture is both 

legitimate and convenient for practical applications but it invites further 

work by which the turbulence due to the front will be separated from the 

bona-fide turbulence inside It.  In this new, equally relevant representation, 

where the intermittency factor figures prominently, the radial distributions 

of properties reported herein will be altered by subtracting the front 

pseudoturbulence and adding an amount of turbulence normally unaccounted 

because of intermittency. Such work will  be reported at a later date. 
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APPENDIX A 

THE TRANSFER FUNCTIONS 

A.l HOT WIRE 

The transfer function W of the hot-wire is given by 

e(f) 
wire 

e(f) 
flow 

1 
W(f) 1 + 4 TT2 f2 M2 

-1/2 
; M = time constant. (A.l) 

where the phase shift Is not Included; here f Is the frequency and M the 

wire time constant.  The latter Is given by 

a R 
r r 

1 - 2a. 
R -R w r 

I  (1 + 2 C A«) 
w 

(A.2) 

Here C Is the overall heat-capacity of the wire 

C - (density) x (specific heat) x (volume) 

OR^ the oven-callbratlon resistance-temperature !*lope, R the heated and 

Rr ehe equilibrium wire resistance, I the current, A* the overheat 

At _ I I OR Aw " 2 R ST (A.3) 
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and e the finite circuit factor which was measured to be 0.008 In our case. 

The quantity ar 1« zero In our case and thus we can re-write (A,2) as 

2 
cprir I  A' 

M - ^-j 1 seconds (A,4) 
r r  I 

Where the specific heat c, density p, wire radius r, and length t  etc., are 

given In cgs units. The transfer function W Is then given by combining 

(A.I) with (A.4). 

At this Juncture, It Is appropriate also to give the limiting value of M at 

zero current. By (A,3) and (A./) we get 

CpTTr       idR M ■ inr-üar (A-5> r r    ** 

where e Is the dc voltage. We recall that at zero current the Nusselt 

number Is 

(A.6) 

a R R awm 
14 7°     *ik

0 ^R/dl2 

and  since at  I-»0 

R   •* R 
awm 

and 

IdR            1    dR 
R JJl          2e W 

the combination (A.5) and  (A.6) gives 

.2 

M    -   0 %NW0 
um    - m± 
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A.2 AMPLIFIER 

The zero-frequency gain G0 of the amplifier Is given In Figure A-l. The 

amplifier transfer function G/G0 has been calibrated for different attenua- 

tlon settings, Is shown on Figure A-2, and has been curve-fitted by 

§- - [1 + (1.25) 10_12 f + (0.75) 10"17 f3 I"1 (A.8) 
o 

where f Is In cycles per second. 

A. 3 COMPENSATOR 

When the compensator time-constant dial Is set at M8 (which Is equal to 

Mi of program WEB-IJ.) the compensator transfer function is 

, 1/2 
11 + 39.6 M r 

C -  1-  -■- 
1 + (0.705) 10" f Mg + (0.369) lo'

3 f2 M* - (3.2) lO-6 f3 M3 

which has been measured to 500 kllc-ycles per second and Is shown In  (A-9) 

Figure A-3. 

A. 4 RMS METER 

The transfer function of the Ballantine rms meter set at 300 millivolt full 

scale Is 

- .     24/E  
VTVM 0.297 0.261 0.364 (A-10) 

1+     /E        "        E T72 

where E Is the dc voltage output from the mean square ja:k on the meter In 

millivolts. For the 1-volt full-scale setting this Is 

eVTVM 0J3    0.685    JTm (A. 11) 

/E       E   " E3/2 

These curve« are shown on Figure A-4. 
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A.S WAVE ANALYZER 

A.5.1  BANDWIDTH 

As Figure A-5 shows, checks made on the frequency-independent, selectable 

bandwidth of the wave analyzer »nowed excellent filtering characteristics 

at 0.2-, 3- and 1-kilocycle-per-second width; the latter is used for the 

measureinents. 

A.5.2 TRANSFER FUNCTION 

The transfer function H, shown in Figure A-6, was found to be independent 

of frequency; tests ar<   always made at the settings ABSOLUTE, MURMAL, 1 VOLT 

f.s., -10 decibels down and using a 1000-ohm load.  In this case, an rms 

input of e millivolts is converted to dc millivolts V by 

e V 
H 

where 

H -    0.312 ♦f 32.94 

V2 
+ 33.33 

v3 
(A.12) 

-136- 



ÜJ 
_l 
< 
U 
*s> 
ffi 

< 

z o 

z 
ÜJ 
I- 
I- 
< 

-4 -3 

OSCILLATOR CENTER 
FREQUENCY INPUT (100KC) 
_J I 1 1  

-1 1 

f(KCPS) 

F09844 U 

FIGURE A-5. EILTE»TNG CHARACTERISTICS OF THE WAVE ANALYZER AT EACH OF 
ITS THREE BANUWIDTHS. U 

.> 

•137- 



T—i—i—i—i—i—i—|—i—r 1—i—I—i—r i—r 

30 

D 
Q. 

> 
2 

10 

DC MV OUT 

F09845U 

FIGUIE A-6. T1ANSFER FUNCTION OF THE HAVE-ANALYZER DETECTOR. 

-138- 



APPENDIX B 

THE WEB-II COMPUTER PROGRAM 

The general purpose of this program Is to nullify the frequency-response 

deficiencies of the apparatus in measuring the frequency-integrated voltage 

output of the hot-wire at each current and each point in the wak?.  This is 

done as follows in each case:  the output spectrum is recorded, the overall 

transfer function measured, and an error-ratio formed from the spectrum 

neasurement alone, indicating how much the measured integrated wire output 

should be increased to account for apparatus deficiencies. 

Each spectrum, taken in the range of 0 to 500 kilocycles per second is 

first broken into 7-kilocycle-»er-srcond intervals (the latter increase at 

the higher frequency end) anJ the analyzer signal and ncise output nored 

and the spectral density of the signal determined; integrated over the 
2 

spectrum this gives the integrated wire output e
}mn4      In the meantime, 

the transfer functions of the amplifier and compensator are evaluated at 

each frequency.  The transfer function of the wire is found as follows: 

the wire time constant outside the wake is known (for each current and 

axial position), as is its current-voltage curve.  The local time constant 

at each point in Che wake is then found by the formula given 1(. the main 

tfixt, and the local transfer function of the wire is computed and combined 

with the others to form the overall transfer function CTr. The value of 
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the latter at each frequency Is now combined with the net wave analyzer 

output at that frequency tc give the Ide»" hot-wire output at that fre- 

quency; Integration then leads to the Ideal Integrated wire output e*.2, 

at that point and current.  The error ratio J Is formed by e2   and 
2 j VTVM 

e*VTVM and combined wlth the wlre output e0VTVM measured with the rms 

voltmeter to correct the latter. 

VTVM 

At ea;h current and point In the wake the program output presents, among 

other quantities, the wire time constant M (M(MSEC)), the Ideal and actual 

Integrated wire outputs e*2TVM (VTVM*2) and ej^ (VTVM2), respectively, 

as computed from the spectrum, the same quantity as measured directly 
2 

eOVTVM ^E02^, the error ratio J, and the final corrected Integrated wire 

output e  (E2).  Further, at each station and current the following are 

among quantities given as a function of the frequency f (FKCPS):  the net 
2 

analyzer output V (f), the wire, amplifier, and compensator transfer 

functions W, G/Go and C, respectively, the overall transfe- function OTF, 
2 

and the net wire signal power density In (volts) /cp«. 

As noted from the above remarks, this program provides a meticulous and 

detailed view of the behavior of the complete electromechanical system 

over the entire matrix of operating situations.  In addition to the new 

Insight It offers Into the technique of anemometry, It affords numerous 

cross checks of the procedure and Increases accuracy. More Importantly, 

the output can now serve as a starting Input for a combined modal-spectral 

analysis (I.e., the spectra of the velocity or density fluctuations alone), 

a task normally so cumbersome that It has been attempted only once previously. 

The procedural diagram of WEB-II Is shown on Figure B-l. 
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APPENDIX C 

THE WEB-III COMPUTER PROGRAM 

The purpose of this program was to process the turbulence data through the 

response-restoration process of the WEB-II program and to prepare them for 

the eventual analysis into frequency-integrated modes (performed '.1th the 

WEB-IV program). 

The basic inputs to this program are the 15 radial traces of integrated 

raw hot-wire turbulence signal (1 for each of 15 currents) and the corres- 

ponding 15 traces of mean wire voltage; the error ratio J is also put in. 

The coordinates of each trace (distinguished by T for the turbulence and 

S for the mean or steady traces) are supplied by an analog-to-digital card- 

punch as "counts;" by appropriate conversion factors (FT and Fg), these 

traces are reduced into curves of voltage ET versus radial distance Y. 

Utilizing the transfer function of the rms voltmeter, the root-mean-square 

of the turbulent signal CJIST) is obtained. This process is performed by 

taking discrete points, 20 in all, for each x station. After subtraction 

of the noise RMSN, the actual integrated wire voltage output at these 

points is known, and can now be corrected for the ideal response by using 

the error ratio J (cf. WEB-II program). As one recalls, J had been obtained 

at 8 currents I, not 15 as available in this program, and also at 10, rather 

than 20 radial positions; interpolation thus became necessary, and the J's 

•o obtained were then used to get the ideal integrated turbulence signal. 
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In similar fashion, the mean wire voltage e was obtained for each point 
s r 

using level L from the plotter curves, corrected Into e to account for the 

line resistance (1,04 ohm), squared and combined with e  to form the Ideal 

nondlmenslonal frequency-Integrated (but amplified) wire turbulence output 

at each current and point; this was further reduced by dividing by the 

zero-frequency amplifier gain G .  Finally, the wire overheat parameter A*. 
2-2  2 w 

against which (e /e  )/G la given In the output was formed. 

The computing procedure for this program Is shown in Figure C-l 
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APPENDIX D 

THE WEB-IV PROGRAM 

The purpose of this program was to supply the modal analysis of the radial 

distribution of frequency-Integrated turbulent fluctuations; final objec- 

tive was therefore to give the velocity and density fluctuations and their 

correlation as a function of radius and axial position along the wake. 

As a first step, the program prepared a list of the flow properties at each 

point In the wake, as derived by the WEB-I program; the location of these 

points (20 per x station) were the same as In WEB-III.  Various combina- 

tions of these flow properties were computed preparatory to Insertion In 

the wire sensitivity coefficients.  Since the Reynolds number Reo and the 

Re -Nu anil Re - T) relations were known fr i the flow calibration, the 

logarithmic derivatives (Reo/r)) (yj/^) and (Reo/Nuo) QfluJZteJ  were 

computed, as was the wire temperature Tw at each current and the attendarc 

values of T  and K.  The circuit parameter Cf was computed from the pre- 
wr • 

vlously measured A'. At this point, sufficient Information existed for 

computing the wire sensitivities to the mass flux (ej and total tempera- 

ture (eT) fluctuations. Use of the local Mach number M(Y) also allowed 

computation of •Imilar senaltlvltlao ea and if to the entropy (temperature) 

and vortlclty (velocity» '.rluctoatlont, respectively. 
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2  2-2 
At this point, the net Ideal Integrated mean square wire voltage e IGZ 

from WEB-III was Introduced at each point and current, giving 15 second- 

degree polynomials (for the mass flux and To representation) with known 

coefficients, and a similar group for the entropy-v^ortlclty representation. 

A least-squares solution oc  these did not work out, and therefore they were 

solved by fitting them to a second-degree curve, obtaining the mass flux 

and total temperature fluctuations and their correlation m, t, and r^, 

respectively, the corresponding vortlclty (T) and entropy (a) fluctuations, 

and the correlation rTa.  Finally, these fluctuations were also given 

normalized to the local velocity and density differences (u« - u(0)) and 

p - p(0) across the wake, as put In from the WEB-I program. 

The computations procedure for this program Is shown In Figure D-l. 
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APPENDIX E 

THE WEB-VII COMPUTER PROGRAM 

Thr purpose of the WEB-VII computer program Is (1) to perform the combined 

modal-spectral analysis of the turbulent Elow and (2) to further^nlpulate 

the modal results of the WEB-IV program in order to get parameters Interest- 

ing from a theoretical viewpoint.  Thus, this program supplies spectra, 

macroscales, turbulent energy ratios and the like. 

E.l MODAL-SPECTRAL ANALYSIS 

Here we want to find the fluctuation density at each frequency and at each 

point in th« waka. The main input is the corrected "ZW  voltage fluctua- 

tion G2*2, a function of the frequency, which is given in millivolts 

squarec par kilocycle and appears on the last column of the WEB-II outputs. 

This q.^antity, it should be notnd,  appears multiplied by the amplifier 

zero-frequency gain (squared) G2. and is first divided by the latter to^ 

give EZFLOW («v)2/kc.  By dividing the latter by (IMA)^ (ROHMNET)  (mv) 

we get the nonwllred (modally integrated) fluctuation denrity (per kc) 

at the particular fcrequancy Z2, and by further dividing by the entrcpy 

fluctuation -oafflclant squared (BS)2 (obtained by interpolation for the 

particular currant IMA and YSTATIOH) wc gat tha Kovaszuay-Morkovln variable 

.2 

Z2 - 
n (ES,2 
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Now we can proceed with the modal analysis at each frequency by solving 

simultaneously the eight equations 

Z2  - D62 + EÖ  + F 
nl      ni    ni 

where i"l, 2 8 corresponds to each of the 8 wire currents employed in 

WEB-II for that frequency; here, of course, the variable öni is the ratio 

of the sensitivity coefficients 

t ETAU 
Ön " "ET 

This solution gives the results 

T*  - D1/2 

„1/2 

OT    27* 0* 

with  the  star denoting spectral density - e.g., T*  is  the rms velocity 

fluctuation  (normalized to the mean local velocity at  that point)  por 
0 0 

kilocycle.  Corollarv quantities formed by this program are T* and a      and 

2     T*2 

2     O a " Toöö 

The latter are the mean-square velocity and density (temperature) fluctua- 

tion density, normalized with the square of the local mean velocity and 

density, respectively, per cycle per second. One quantity of Interest, 

put out by WEB-VII, If the comparison of the quantities T*/a*.    Another 

is the spectral Jenslty of each mode squar-sd compared with the frequency- 

Integrated mode 

7*2 

ZT*: 

-*2 
and 

Za *2 
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where 

ZT 

w 
1000 

k P2'. 1000 

where the 1000-factor appears In order to convert to integrand Into cycles 

per second (since T*2 and a*2  ire obtained within kilocycle "windows"). 

The latter two integrals should obviously be equal to the integrated vel- 

ocity and density fluctuations, respectively, at that point in the wake. 

The pertinent integral scales (macroscales) are computed from the relations 

A. a 
u s^(0) 

4 ZO*2 

A-, ■ 
4 Z7*2 

where u is the local flow velocity (obtained from the WEB-I output) and 

s2(0) and t2(0) r.re  the limit values of s2 and t2 at zero frequency.  In 

the present Instance these quantities were evaluated at 7 kilocycles per 

second.  Because both numerator and denominator in the latter two equa- 

tions are each normalized to the local mean values, the definition of the 

scale« Is Independent of these values. 

2 2 
This program finally outputed the nondtmenslonal spectra s /s (0) and 

t2/t2(0) versus the nondimensional frequencies 

P(CPS) At 

t       u 

F(CPS) A^ 
n. a —3  

Not« that the Utter outputs present best comparison between the spectra 

of these two «odes, «hereas the output represents best the portions of the 

spectrum contributing most heavily to each mode. 
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Other outputs gave comparisons of the scales with the transverse wake 
1/2 

scale L (from WEB-V) and the virtual wake (drag) diameter (C A) 

This program also provided for the manipulation of certain quantities 

put out by the WEB-IV program; the following were formed as a function of 

position in the wake: 

(1) The quantity TAU/SIGMA and the related quantity 

1 SRA SIGMA 
TAU 

(2) 

(3) 

(7-i) r 
where M is the local Mach number. 

The rms velocity and density fluctuations at 

each XSTATION, each normalized with the axis 

value.  (See UPRIME/UPRIMO and RHOPRIM/RHOPRIMO.) 

The local average turbulent energy divided by the 

local mean kinetic energy 

E„ 
II c ^    s    ENERGY    - 3T2 -  3.46 Tarra 

where we have assumed isotropy in order to 

compute the turbulent velocity vector from the 

measured longitudinal component, and where 

third- and higher-order moments are neglected. 

(4) Other quantities manipulating the fluctuations 

according to the dynamic equilibrium hypothesis. 

Typical outputs appear in Figure 41. 
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